DOI QR코드

DOI QR Code

CONTINUED FRACTION AND DIOPHANTINE EQUATION

  • Received : 2015.04.07
  • Published : 2016.05.31

Abstract

Our paper is devoted to the study of certain diophantine equations on the ring of polynomials over a finite field, which are intimately related to algebraic formal power series which have partial quotients of unbounded degree in their continued fraction expansion. In particular it is shown that there are Pisot formal power series with degree greater than 2, having infinitely many large partial quotients in their simple continued fraction expansions. This generalizes an earlier result of Baum and Sweet for algebraic formal power series.

Keywords

References

  1. Y. Amice, Les nombres p-adiques, PUF Collection Sup.
  2. P. Bateman and A. L. Duquette, The analogue of the Pisot-Vijayaraghavan numbers in fields of formal power series, Illinois J. Math. 6 (1962), 594-606.
  3. L. E. Baum and M. M. Sweet, Continued fraction of algebraic power series in characteristic 2, Ann. of Math. 103 (1976), no. 3, 593-610. https://doi.org/10.2307/1970953
  4. M. J. Bertin, A. Decomps-Guilloux, M. Grandet-Hugot, M. Pathiaux-Deleosse, and J. P. Schreiber, Pisot and Salem Numbers, Birkhauser Verlag Basel, 1992.
  5. H. Davenport, A remark on continued fractions, Michigan Math. J. 11 (1964), 343-344. https://doi.org/10.1307/mmj/1028999187
  6. M. Grandet-Hugot, Sur une propriete des nombres de Pisot dans un corps de serie formelles, C.R.A.S. 266 Ser. A (1967), A39-A41.
  7. M. Grandet-Hugot, Elements algebriques remarquables dans un corps de serie formelles, Acta Arith. 14 (1968), 177-184. https://doi.org/10.4064/aa-14-2-177-184
  8. G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, Oxford Science Publication, 1979.
  9. A. Lasjaunias, Diophantine approximation and continued fraction expansions of algebraic power series in positive characteristic, J. Number Theory 65 (1997), no. 2, 206-225. https://doi.org/10.1006/jnth.1997.2160
  10. K. Mahler, On a theorem of Liouville in fields of positive characteristic, Can. J. Math. 1 (1949), 397-400. https://doi.org/10.4153/CJM-1949-035-0
  11. B. de Mathan, Approximation exponents for algebraic functions, Acta Arith. 60 (1992), no. 4, 359-370. https://doi.org/10.4064/aa-60-4-359-370
  12. W. Mills and D. Robbins, Continued fraction for certain algebraic power series, J. Number Theory 23 (1986), no. 3, 388-404. https://doi.org/10.1016/0022-314X(86)90083-1
  13. M. Mkaouar, Sur les fractions continues des series formelles quadratiques sur $\mathbb{F}_q(X)$, Acta Arith. 97 (2001), no. 3, 241-251. https://doi.org/10.4064/aa97-3-4
  14. R. P. Pass, On the partial quotients of algebraic Integers, J. Number Theory 11 (1979), no. 1, 14-15. https://doi.org/10.1016/0022-314X(79)90015-5
  15. K. F. Roth, Rational approximations to algebraic numbers, Mathematika 2 (1955), 1-20. https://doi.org/10.1112/S0025579300000644
  16. V. G Sprindzuk, Mahler's problem in metric number theory, Translation of Mathematical monographs, Vol. 25, Amer. Math. Soc., Providence, RI, 1969.
  17. D. Thakur, Diophantine approximation exponents and continued fractions for algebraic power series, J. Number Theory 79 (1999), no. 2, 284-291. https://doi.org/10.1006/jnth.1999.2413
  18. D. Thakur, Diophantine approximation and transcendance in finite characteristic, (Published in the book Diophantine equations ed. N. Saradha).
  19. J. F. Voloch, Diophantine approximation in positive characteristic, Period. Math. Hungar. 19 (1988), no. 3, 217-225. https://doi.org/10.1007/BF01850290