• Title/Summary/Keyword: finite mixture distributions

Search Result 27, Processing Time 0.037 seconds

Tree Size Distribution Modelling: Moving from Complexity to Finite Mixture

  • Ogana, Friday Nwabueze;Chukwu, Onyekachi;Ajayi, Samuel
    • Journal of Forest and Environmental Science
    • /
    • v.36 no.1
    • /
    • pp.7-16
    • /
    • 2020
  • Tree size distribution modelling is an integral part of forest management. Most distribution yield systems rely on some flexible probability models. In this study, a simple finite mixture of two components two-parameter Weibull distribution was compared with complex four-parameter distributions in terms of their fitness to predict tree size distribution of teak (Tectona grandis Linn f) plantations. Also, a system of equation was developed using Seemingly Unrelated Regression wherein the size distributions of the stand were predicted. Generalized beta, Johnson's SB, Logit-Logistic and generalized Weibull distributions were the four-parameter distributions considered. The Kolmogorov-Smirnov test and negative log-likelihood value were used to assess the distributions. The results show that the simple finite mixture outperformed the four-parameter distributions especially in stands that are bimodal and heavily skewed. Twelve models were developed in the system of equation-one for predicting mean diameter, seven for predicting percentiles and four for predicting the parameters of the finite mixture distribution. Predictions from the system of equation are reasonable and compare well with observed distributions of the stand. This simplified mixture would allow for wider application in distribution modelling and can also be integrated as component model in stand density management diagram.

Application of Finite Mixture to Characterise Degraded Gmelina arborea Roxb Plantation in Omo Forest Reserve, Nigeria

  • Ogana, Friday Nwabueze
    • Journal of Forest and Environmental Science
    • /
    • v.34 no.6
    • /
    • pp.451-456
    • /
    • 2018
  • The use of single component distribution to describe the irregular stand structure of degraded forest often lead to bias. Such biasness can be overcome by the application of finite mixture distribution. Therefore, in this study, finite mixture distribution was used to characterise the irregular stand structure of the Gmelina arborea plantation in Omo forest reserve. Thirty plots, ten each from the three stands established in 1984, 1990 and 2005 were used. The data were pooled per stand and fitted. Four finite mixture distributions including normal mixture, lognormal mixture, gamma mixture and Weibull mixture were considered. The method of maximum likelihood was used to fit the finite mixture distributions to the data. Model assessment was based on negative loglikelihood value ($-{\Lambda}{\Lambda}$), Akaike information criterion (AIC), Bayesian information criterion (BIC) and root mean square error (RMSE). The results showed that the mixture distributions provide accurate and precise characterisation of the irregular diameter distribution of the degraded Gmelina arborea stands. The $-{\Lambda}{\Lambda}$, AIC, BIC and RMSE values ranged from -715.233 to -348.375, 703.926 to 1433.588, 718.598 to 1451.334 and 3.003 to 7.492, respectively. Their performances were relatively the same. This approach can be used to describe other irregular forest stand structures, especially the multi-species forest.

Statistical analysis and probabilistic modeling of WIM monitoring data of an instrumented arch bridge

  • Ye, X.W.;Su, Y.H.;Xi, P.S.;Chen, B.;Han, J.P.
    • Smart Structures and Systems
    • /
    • v.17 no.6
    • /
    • pp.1087-1105
    • /
    • 2016
  • Traffic load and volume is one of the most important physical quantities for bridge safety evaluation and maintenance strategies formulation. This paper aims to conduct the statistical analysis of traffic volume information and the multimodal modeling of gross vehicle weight (GVW) based on the monitoring data obtained from the weigh-in-motion (WIM) system instrumented on the arch Jiubao Bridge located in Hangzhou, China. A genetic algorithm (GA)-based mixture parameter estimation approach is developed for derivation of the unknown mixture parameters in mixed distribution models. The statistical analysis of one-year WIM data is firstly performed according to the vehicle type, single axle weight, and GVW. The probability density function (PDF) and cumulative distribution function (CDF) of the GVW data of selected vehicle types are then formulated by use of three kinds of finite mixed distributions (normal, lognormal and Weibull). The mixture parameters are determined by use of the proposed GA-based method. The results indicate that the stochastic properties of the GVW data acquired from the field-instrumented WIM sensors are effectively characterized by the method of finite mixture distributions in conjunction with the proposed GA-based mixture parameter identification algorithm. Moreover, it is revealed that the Weibull mixture distribution is relatively superior in modeling of the WIM data on the basis of the calculated Akaike's information criterion (AIC) values.

Extreme Values of Mixed Erlang Random Variables (혼합 얼랑 확률변수의 극한치)

  • Kang, Sung-Yeol
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.28 no.4
    • /
    • pp.145-153
    • /
    • 2003
  • In this Paper, we examine the limiting distributional behaviour of extreme values of mixed Erlang random variables. We show that, in the finite mixture of Erlang distributions, the component distribution with an asymptotically dominant tail has a critical effect on the asymptotic extreme behavior of the mixture distribution and it converges to the Gumbel extreme-value distribution. Normalizing constants are also established. We apply this result to characterize the asymptotic distribution of maxima of sojourn times in M/M/s queuing system. We also show that Erlang mixtures with continuous mixing may converge to the Gumbel or Type II extreme-value distribution depending on their mixing distributions, considering two special cases of uniform mixing and exponential mixing.

Extreme value modeling of structural load effects with non-identical distribution using clustering

  • Zhou, Junyong;Ruan, Xin;Shi, Xuefei;Pan, Chudong
    • Structural Engineering and Mechanics
    • /
    • v.74 no.1
    • /
    • pp.55-67
    • /
    • 2020
  • The common practice to predict the characteristic structural load effects (LEs) in long reference periods is to employ the extreme value theory (EVT) for building limit distributions. However, most applications ignore that LEs are driven by multiple loading events and thus do not have the identical distribution, a prerequisite for EVT. In this study, we propose the composite extreme value modeling approach using clustering to (a) cluster initial blended samples into finite identical distributed subsamples using the finite mixture model, expectation-maximization algorithm, and the Akaike information criterion; (b) combine limit distributions of subsamples into a composite prediction equation using the generalized Pareto distribution based on a joint threshold. The proposed approach was validated both through numerical examples with known solutions and engineering applications of bridge traffic LEs on a long-span bridge. The results indicate that a joint threshold largely benefits the composite extreme value modeling, many appropriate tail approaching models can be used, and the equation form is simply the sum of the weighted models. In numerical examples, the proposed approach using clustering generated accurate extrema prediction of any reference period compared with the known solutions, whereas the common practice of employing EVT without clustering on the mixture data showed large deviations. Real-world bridge traffic LEs are driven by multi-events and present multipeak distributions, and the proposed approach is more capable of capturing the tendency of tailed LEs than the conventional approach. The proposed approach is expected to have wide applications to general problems such as samples that are driven by multiple events and that do not have the identical distribution.

Nonlinear analysis of viscoelastic micro-composite beam with geometrical imperfection using FEM: MSGT electro-magneto-elastic bending, buckling and vibration solutions

  • Alimirzaei, S.;Mohammadimehr, M.;Tounsi, Abdelouahed
    • Structural Engineering and Mechanics
    • /
    • v.71 no.5
    • /
    • pp.485-502
    • /
    • 2019
  • In this research, the nonlinear static, buckling and vibration analysis of viscoelastic micro-composite beam reinforced by various distributions of boron nitrid nanotube (BNNT) with initial geometrical imperfection by modified strain gradient theory (MSGT) using finite element method (FEM) are presented. The various distributions of BNNT are considered as UD, FG-V and FG-X and also, the extended rule of mixture is used to estimate the properties of micro-composite beam. The components of stress are dependent to mechanical, electrical and thermal terms and calculated using piezoelasticity theory. Then, the kinematic equations of micro-composite beam using the displacement fields are obtained. The governing equations of motion are derived using energy method and Hamilton's principle based on MSGT. Then, using FEM, these equations are solved. Finally the effects of different parameters such as initial geometrical imperfection, various distributions of nanotube, damping coefficient, piezoelectric constant, slenderness ratio, Winkler spring constant, Pasternak shear constant, various boundary conditions and three material length scale parameters on the behavior of nonlinear static, buckling and vibration of micro-composite beam are investigated. The results indicate that with an increase in the geometrical imperfection parameter, the stiffness of micro-composite beam increases and thus the non-dimensional nonlinear frequency of the micro structure reduces gradually.

Simulation and Modeling of Polyethylene/Clay Nanocomposite for Dielectric Application

  • Zazoum, Bouchaib;David, Eric;Ngo, Anh Dung
    • Transactions on Electrical and Electronic Materials
    • /
    • v.15 no.4
    • /
    • pp.175-181
    • /
    • 2014
  • In this paper, the simulation and modeling of a polyethylene/clay nanocomposite were undertaken to predict the nanocomposite's dielectric behavior and to help design a nanocomposite material with optimum electrical properties for electrotechnical or electronic applications. A 3-D simulation model using the finite elements method was employed in order to study the effective permittivity and electric field distribution of two-phase nanocomposite materials for ordered and random distributions of inclusions in a low-loss host matrix such as polyethylene. The influence of the dispersion of reinforcing particles, and of the permittivity and radius of the inclusions, was analysed. The simulation results were compared with alternative, known theoretical solutions obtained from classical models, and were found to be in good agreement. The numerical results also indicate that for fixed volume fractions of nanoparticles the effective permittivity of the mixture, for ordered and random distributions, does not vary with the degree of dispersion. The variation of the effective permittivity with the particle radius is shown, using numerical data, to agree with the analytical modules.

Vibration response of rotating carbon nanotube reinforced composites in thermal environment

  • Ozge Ozdemir;Ismail Esen;Huseyin Ural
    • Steel and Composite Structures
    • /
    • v.47 no.1
    • /
    • pp.1-17
    • /
    • 2023
  • This paper deals with the free vibration behavior of rotating composite beams reinforced with carbon nanotubes (CNTs) under uniform thermal loads. The temperature-dependent beam material is assumed to be a mixture of single-walled carbon nanotubes (SWCNTs) in an isotropic matrix and five different functionally graded (FG) distributions of CNTs are considered according to the variation along the thickness, namely the UD-uniform, FG-O, FG-V, FG-Λ and FG-X distributions where FG-V and FG-Λ are unsymmetrical patterns. Considering the Timoshenko beam theory (TBT), a new finite element formulation of functionally graded carbon nanotube reinforced composite (FGCNTRC) beam is created for the first time. And the effects of several essential parameters including rotational speed, hub radius, effective material properties, slenderness ratio, boundary conditions, thermal force and moments due to temperature variation are considered in the formulation. By implementing different boundary conditions, some new results of both symmetric and non-symmetrical distribution patterns are presented in tables and figures to be used as benchmark for further validation. In addition, as an alternative advanced composite application for rotating systems exposed to thermal load, the positive effects of CNT addition in improving the dynamic performance of the system have been observed and the results are presented in several tables and figures.

Multilevel Threshold Selection Method Based on Gaussian-Type Finite Mixture Distributions (가우시안형 유한 혼합 분포에 기반한 다중 임계값 결정법)

  • Seo, Suk-T.;Lee, In-K.;Jeong, Hye-C.;Kwon, Soon-H.
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.17 no.6
    • /
    • pp.725-730
    • /
    • 2007
  • Gray-level histogram-based threshold selection methods such as Otsu's method, Huang and Wang's method, and etc. have been widely used for the threshold selection in image processing. They are simple and effective, but take too much time to determine the optimal multilevel threshold values as the number of thresholds are increased. In this paper, we measure correlation between gray-levels by using the Gaussian function and define a Gaussian-type finite mixture distribution which is combination of the Gaussian distribution function with the gray-level histogram, and propose a fast and effective threshold selection method using it. We show the effectiveness of the proposed through experimental results applied it to three images and the efficiency though comparison of the computational complexity of the proposed with that of Otsu's method.

The Null Distribution of the Likelihood Ratio Test for a Mixture of Two Gammas

  • Min, Dae-Hee
    • Journal of the Korean Data and Information Science Society
    • /
    • v.9 no.2
    • /
    • pp.289-298
    • /
    • 1998
  • We investigate the distribution of likelihood ratio test(LRT) of null hypothesis a sample is from single gamma with unknown shape and scale against the alternative hypothesis a sample is from a mixture of two gammas, each with unknown scale and unknown (but equal) scale. To obtain stable maximum likelihood estimates(MLE) of a mixture of two gamma distributions, the EM(Dempster, Laird, and Robin(1977))and Modified Newton(Jensen and Johansen(1991)) algorithms were implemented. Based on EM, we made a simple structure likelihood equation for each parameter and could obtain stable solution by Modified Newton Algorithms. Simulation study was conducted to investigate the distribution of LRT for sample size n = 25, 50, 75, 100, 50, 200, 300, 400, 500 with 2500 replications. To determine the small sample distribution of LRT, I considered the model of a gamma distribution with shape parameter equal to 1 + f(n) and scale parameter equal to 2. The simulation results indicate that the null distribution is essentially invariant to the value of the shape parameter. Modeling of the null distribution indicates that it is well approximated by a gamma distribution with shape parameter equal to the quantity $0.927+1.18/\sqrt{n}$ and scale parameter equal to 2.16.

  • PDF