DOI QR코드

DOI QR Code

Simulation and Modeling of Polyethylene/Clay Nanocomposite for Dielectric Application

  • Zazoum, Bouchaib (Department of Mechanical Engineering, Ecole de technologie superieure (ETS)) ;
  • David, Eric (Department of Mechanical Engineering, Ecole de technologie superieure (ETS)) ;
  • Ngo, Anh Dung (Department of Mechanical Engineering, Ecole de technologie superieure (ETS))
  • Received : 2014.03.31
  • Accepted : 2014.06.02
  • Published : 2014.08.25

Abstract

In this paper, the simulation and modeling of a polyethylene/clay nanocomposite were undertaken to predict the nanocomposite's dielectric behavior and to help design a nanocomposite material with optimum electrical properties for electrotechnical or electronic applications. A 3-D simulation model using the finite elements method was employed in order to study the effective permittivity and electric field distribution of two-phase nanocomposite materials for ordered and random distributions of inclusions in a low-loss host matrix such as polyethylene. The influence of the dispersion of reinforcing particles, and of the permittivity and radius of the inclusions, was analysed. The simulation results were compared with alternative, known theoretical solutions obtained from classical models, and were found to be in good agreement. The numerical results also indicate that for fixed volume fractions of nanoparticles the effective permittivity of the mixture, for ordered and random distributions, does not vary with the degree of dispersion. The variation of the effective permittivity with the particle radius is shown, using numerical data, to agree with the analytical modules.

Keywords

References

  1. M. Hoyos, N. Garcia, R. Navarro, A. Dardano, A. Ratto, F. Guastavino, and P. Tiemblo, Journal of Polymer Science Part B: Polymer Physics, 46, 1301 (2008) [DOI: http://dx.doi.org/10.1002/polb.21464].
  2. M. A. Osman and J.E.P. Rupp, U. W. Suter, Polymer, 46, 1653 (2005) [DOI: http://dx.doi.org/10.1016/j.polymer.2004.11.112].
  3. L. Utracki and M. Kamal, Arabian Journal Science & Engineering-- Special Issue, 27, 43 (2002).
  4. X. Kornmann, H. Lindberg, and L. A. Berglund, Polymer, 42, 1303 (2001) [DOI: http://dx.doi.org/10.1016/S0032-3861(00)00346-3].
  5. Y. Han, Z. Wang, X. Li, J. Fu, and Z. Cheng, Current Trends in Polymer Science, 6, 1 (2001) [DOI: http://dx.doi.org/10.1016/S1360-1385(00)01830-6].
  6. M. Kawasumi, N. Hasegawa, M. Kato, A. Usuki, and A. Okada, Macromolecules, 30, 6333 (1997) [DOI: http://dx.doi.org/10.1021/ma961786h
  7. R. A. Vaia, R. K. Teukolsky, and E. P. Giannelis, Chemistry of Materials, 6, 1017 (1994) [DOI: http://dx.doi.org/10.1021/cm00043a025].
  8. B. Zazoum, E. David, and A. Ngo, Journal of Nanotechnology, 2013, 10 (2013).
  9. E. David, M. Frechette, B. Zazoum, C. Daran-Daneau, A. D. Ngo, and H. Couderc, Journal of Nanomaterials, 2013 (2013).
  10. S. Torquato, Random Heterogeneous Materials: Microstructure and Macroscopic Properties (Springer, 2002) [DOI: http://dx.doi.org/10.1007/978-1-4757-6355-3].
  11. G. Banhegyi, Colloid and Polymer Science, 264, 1030 (1986) [DOI: http://dx.doi.org/10.1007/BF01410321].
  12. R. Cret and L. Cret, Journal of Optoelectronics and Advanced Materials, 6, 1045 (2004).
  13. E. Tuncer, Y. V. Serdyuk, and S. M. Gubanski, Dielectrics and Electrical Insulation, IEEE Transactions, 9, 809 (2002).
  14. J. H. Peng, J. J. Yang, M. Huang, J. Sun, and Z. Y. Wu, Frontiers of Materials Science in China, 3, 38 (2009) [DOI: http://dx.doi.org/10.1007/s11706-009-0015-2].
  15. M. Y. Koledintseva, S. K. Patil, R. W. Schwartz, W. Huebner, K. N. Rozanov, J. Shen, and J. Chen, Dielectrics and Electrical Insulation, IEEE Transactions, 16, 793 (2009).
  16. P. Barber, S. Balasubramanian, Y. Anguchamy, S. Gong, A. Wibowo, H. Gao, H. J. Ploehn, H. C. Zur Loye, Materials, 2, 1697 (2009) [DOI: http://dx.doi.org/10.3390/ma2041697].
  17. C. Blanchard, J. A. Porti, J. A. Morente, A. Salinas, and E. A. Navarro, J. Appl. Phys., 102, 064101 (2007) [DOI: http://dx.doi.org/10.1063/1.2779216].
  18. K. K. Karkkainen, A. H. Sihvola, and K. I. Nikoskinen, Geoscience and Remote Sensing, IEEE Transactions, 38, 1303 (2000).
  19. A. H. Sihvola and J. A. Kong, Geoscience and Remote Sensing, IEEE Transactions, 26, 420 (1988).
  20. M. Beran, N. York (1968).
  21. Y. P. Emets, Journal of Experimental and Theoretical Physics, 87, 612 (1998) [DOI: http://dx.doi.org/10.1134/1.558701].
  22. E. Tuncer, S. M. Gubanski, and B. Nettelblad, J. Appl. Phys., 89, 8092 (2001) [DOI: http://dx.doi.org/10.1063/1.1372363].
  23. Z. Hashin and S. Shtrikman, J. Appl. Phys., 33, 3125 (1962) [DOI:http://dx.doi.org/10.1063/1.1728579].
  24. D. J. Bergman, Annals of Physics, 138, 78 (1982) [DOI: http://dx.doi.org/10.1016/0003-4916(82)90176-2].
  25. K. Lal and R. Parshad, J. Phys. D: Appl. Phys., 6, 1363 (1973) [DOI:http://dx.doi.org/10.1088/0022-3727/6/11/311].
  26. H. Looyenga, Physica, 31, 401 (1965) [DOI: http://dx.doi.org/10.1016/0031-8914(65)90045-5].
  27. E. Tuncer, B. Nettelblad, and S. M. Guba-ski, J. Appl. Phys., 92, 4612 (2002) [DOI: http://dx.doi.org/10.1063/1.1505975].
  28. E. Tuncer, Y. Serdyuk, and S. Gubanski, Comparing Dielectric Properties of Binary Composite Structures Obtained with Different Calculation Tools and Methods, Electrical Insulation and Dielectric Phenomena (2001 Annual Report. Conference on. IEEE, 2001) p. 665.
  29. C. Brosseau and A. Beroual, J. Phys. D: Appl. Phys., 34, 704 (2001) [DOI: http://dx.doi.org/10.1088/0022-3727/34/5/307].
  30. E. Tuncer, S. M. Gubanski, and B. Nettelblad, J. Appl. Phys., 89, 8092 (2001) [DOI: http://dx.doi.org/10.1063/1.1372363].
  31. N. Jebbor and S. Bri, Journal of Electrostatics, 70, 393 (2012) [DOI: http://dx.doi.org/10.1016/j.elstat.2012.05.007].
  32. B. Venkatesulu, B.L.G. Jonsson, H. Edin, and M. Norgren, Dielectrics and Electrical Insulation, IEEE Transactions, 20, 177 (2013).
  33. X. Fa, X. Rcas, C. Cret, X. R. D. Petreus, and X. X. Palaghit, Modeling and Simulation of Dielectric Mixtures Using Finite Elements Method, Design and Technology in Electronic Packaging (SIITME) (2010 IEEE 16th International Symposium, 2010) p. 305.
  34. R. Cret, L. Darabant, C. Farcas, and A. Turcu, Considerations about the influence of some factors related to the geometric characteristics of inclusions on effective permittivity of dielectric mixtures, Advanced Topics in Electrical Engineering (ATEE) (2011 7th International Symposium, 2011) p. 1.
  35. K. Karkkainen, A. Sihvola, and K. Nikoskinen, Geoscience and Remote Sensing, IEEE Transactions, 39, 1013 (2001).
  36. A. H. Sihvola and J. A. Kong, Geoscience and Remote Sensing, IEEE Transactions, 26, 420 (1988).
  37. F. Nilsson, U. W. Gedde, and M. S. Hedenqvist, Composites Science and Technology, 71, 216 (2011) [DOI: http://dx.doi.org/10.1016/j.compscitech.2010.11.016].