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Abstract
Tree size distribution modelling is an integral part of forest management. Most distribution yield systems rely on some 
flexible probability models. In this study, a simple finite mixture of two components two-parameter Weibull distribution 
was compared with complex four-parameter distributions in terms of their fitness to predict tree size distribution of 
teak (Tectona grandis Linn f) plantations. Also, a system of equation was developed using Seemingly Unrelated Regression 
wherein the size distributions of the stand were predicted. Generalized beta, Johnson’s SB, Logit-Logistic and generalized 
Weibull distributions were the four-parameter distributions considered. The Kolmogorov-Smirnov test and negative 
log-likelihood value were used to assess the distributions. The results show that the simple finite mixture outperformed 
the four-parameter distributions especially in stands that are bimodal and heavily skewed. Twelve models were developed 
in the system of equation-one for predicting mean diameter, seven for predicting percentiles and four for predicting 
the parameters of the finite mixture distribution. Predictions from the system of equation are reasonable and compare 
well with observed distributions of the stand. This simplified mixture would allow for wider application in distribution 
modelling and can also be integrated as component model in stand density management diagram.
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Introduction

Modelling tree size distribution is an important aspect of 
forest growth and yield studies. It is a determinant of stand 
structure, stability, volume and volume of different prod-
ucts (van Laar and Akҫa 2007; Gorgoso-Varela and 
Rojo-Alboreca 2014). Tree size distribution modelling has 
been an integral part of forest management, planning and 
research. It has often been used to bridge the gap between 
stand level models and tree level models (Larsen and Cao 
2006). Since the early work of De Liocourt (1898), several 
probability density functions (pdf) have been used for 
growth and yield studies with different level of success in-

cluding gamma, normal, lognormal, Weibull, generalized 
beta, Johnson’s SB, Logit-Logistic, generalized Weibull 
distributions (Zhang et al. 2003; Wang and Rennolls 2005; 
Palahí et al. 2007; Ajayi 2013; Poudel and Cao 2013; 
Gorgoso-Varela and Rojo-Alboreca 2014; Ogana et al. 
2018).

The choice of distribution model in growth and yield 
studies depends on its relative flexibility (approximate wide 
varieties of shapes), ease of parameter estimation and sim-
plicity in computing proportion of trees in different classes 
(Burkart and Tomé 2012). Tree growth characteristics such 
as diameter and height exhibit different structures due to 
silvicultural treatments (below or above thinning) and/or 
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Table 1. Descriptive statistics of tree and stand variables of T. grandis

Variable
Descriptive statistic

Mean Max Min Standard deviation

TREE
   DBH (cm)   17.9      37.9     6.0     5.35
   Height (m)   16.7      26.5     6.6     3.51
STAND
   Age (years)   19.6      27.0   13.0     5.28
   Quadratic mean (cm)   18.4      22.4   14.3     2.23
   DGM (cm)   20.0      23.9   15.3     2.42
   Hd (m)   21.3      24.0   17.9     1.87
   G (m2/ha)   24.02      50.78   11.54     8.84
   N (trees/ha) 880 1,744 624 196.08
   GS (m)     3.4        4.0     2.4     0.30

DGM, basal of central diameter; Hd, dominant height; G, basal area; N, number of trees; GS, growing space.

mortality. According to van Laar and Akҫa (2007), the 
structure of a stand during the early stage of development 
before thinning is symmetrical and can be considered as a 
normal distribution; but the stand may become skewed (i.e. 
asymmetric) with increasing age due to mortality or 
thinning. Thus, because of the effect of thinning and mor-
tality, foresters have depended on the use of complex and 
more flexible distributions such as the four parameters dis-
tributions (e.g. generalized beta, Johnson’s SB, Logit- 
Logistic, generalized Weibull distributions, etc.) for tree 
size distribution modelling. These distributions are flexible 
and therefore can describe wide range of shapes (Wang 
2005; Wang and Rennolls 2005). However, they require 
great deal of computations and sometimes may not approx-
imate the stand structure, especially a stand that is bimodal 
or heavily skewed.

Finite mixture (FM) was introduced to forestry as an al-
ternative technique for describing bimodal or heavily 
skewed size distributions (Zhang et al. 2001; Liu et al. 
2002; Zasada and Cieszewski 2005). Since then several re-
searchers have used FM to classify and/or describe the 
structure of forest stands (e.g., Zhang and Liu 2006; 
Jaworski and Podlaski 2012;  Liu et al. 2014; Tsogt and 
Lin 2012; Lin et al. 2016; Podlaski 2017). Recently, Ogana 
(2018) applied FM to describe the structure of degraded 
Gmelina arborea Roxb stands in Nigeria. The number of 
components in the mixture distribution and the mixing pro-

portion could either be predetermined (Zasada and 
Cieszewski 2005) or iteratively searched which can be ach-
ieved by maximum likelihood through expectation max-
imization algorithm.

Generally, yield systems predict values for the parameters 
of distribution functions (Clutter et al. 1983). The parame-
ters are related either directly with stand variables 
(parameter prediction model) or diameter mo-
ment/percentiles derived from forest stand variables 
(parameter recovery model). This can be used for implicit 
prediction of future yield. Despite the flexibility of FM, the 
application of the distribution to growth and yield models 
has been limited. To date, no published forestry literature 
exists in Nigeria that relate the parameters of FM dis-
tribution with stand variables as much as we know. 
Therefore, the objectives of this study were to: compare the 
complex commonly used four-parameter distributions with 
a simple finite mixture distribution, and to model the pa-
rameters of the finite mixture distribution with stand varia-
bles for yield predictions. 

Materials and Methods

Data 

The study site selected for the study was the Tectona 
grandis Lnn.f (teak) plantation in Omo Forest Reserve, 
Ogun State, Nigeria. It lies between Latitudes 6°35′ to 
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7°03′N and Longitudes 4°09′ to 4°40′E and occupies an 
area of 139,100 ha. The data consist of 1919 trees measured 
from 35 sample plots of 625 m2 size. Diameter at breast 
height (DBH at 1.3m above the ground level) and total 
height were measured with diameter tape and hypsometer 
to the nearest 0.1 cm, and 0.1 m, respectively. Stand varia-
bles including number of trees per ha, quadratic mean di-
ameter, basal area of central diameter, dominant height, 
growing space and basal area per ha were computed. The 
descriptive statistics of the data set are presented in Table 1.

Four-parameter distribution models

Four commonly used 4-parameter distributions in for-
estry were considered in this study including Johnson’s SB 
(SB), generalized beta (GB), Logit-Logistic (LL) and 
Generalized Weibull (GW). These distributions are rela-
tively flexible to describe both positive and negative skew 
distributions (Wang and Rennolls 2005). The four 4-pa-
rameter distributions were compared with a simple finite 
mixture distribution. Tree diameter and height were the 
tree size variables used because they are the fundamental 
variables from which other stand variables are derived 
(Sharma et al. 2018).

The Johnson’s SB distribution: the four parameter 
Johnson’s SB (Johnson 1949) is given by:
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Eq. (1)

Where  is the location parameter,  is the scale parame-
ter, and  and  are the shape parameters (i.e., asymmetry 
and kurtosis parameters, respectively); ＜x＜ + , -∞ 
＜＜+∞, -∞＜＜+∞, ＞0, and ＞0. Johnson’s 
SB has no closed-form cumulative distribution function 
(cdf) and as such, numerical integration was applied. The 
SB distribution was recently used by Gorgoso-Varela and 
Rojo-Alboreca (2014), Ogana et al. (2017) and Ogana et 
al. (2018).

The Logit-Logistic (LL) distribution: the probability 
density function (pdf) and cumulative distribution function 
(cdf) of LL are expressed as:
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Eq. (3) 

Where f(x)=probability density function, F(x)=cumu-
lative distribution function, x=diameter/height. The pa-
rameters  = mu and =sigma are the shape parameters. 
Other parameters are previously defined in equation (1). 
This distribution was used by Wang and Rennolls (2005), 
Gorgoso-Varela et al. (2016) and Ogana et al. (2018)

The generalized Weibull (GW) distribution: this is a 
four-parameter Weibull distribution introduced to forestry 
by Wang and Rennolls (2005). Its pdf and cdf are given by:

  

 
 

 


 






 




 

Eq. (4)

  
 







Eq. (5)

Where c=shape parameter (c＞0); k=exponentiated 
shape parameter (k＞0); b=scale parameter (b＞0); a= 
location parameter. The GW distribution was used by 
Wang and Rennolls (2005). 

The generalized beta (GB) distribution: the pdf of GBD 
is expressed as:

   
 

 
 


 

 

  Eq. (6)

      

   Eq. (7)

Where 1, 2 are the two shape parameters; a and b are 
the location and scale parameters, respectively, Γ is the 
gamma function. a≤x≤b, 1＞0, 2＞0. Just as the SB 
distribution, GB has no closed-form. Numerical in-
tegration was used to compute class frequency. The GB dis-
tribution was used by Li et al. (2002), Wang and Rennolls 
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(2005) and Jin et al. (2013).

Finite mixture (FM) distribution

The finite mixture distribution for a random continuous 
variable x (e.g. tree diameter, height etc.) can be expressed 
as:

 
 



     ⋯

Eq. (8)

Where fj (x)=probability density function (pdf) of the 
jth individual component distribution, =mixing pro-
portion of the individual components in the mixture dis-
tribution which must satisfy the condition: 0≤j≤1 and 
πk=∑  

 j. The number of components in the mixture 
could be predetermined (Zasada and Cieszewski 2005) or 
search iteratively (Ogana 2018). However, the chance of 
achieving convergence becomes slimmer when the compo-
nents in the mixture increases (Jaworski and Podlaski 
2012). In this study, a simple scenario of mixing proportion 
was formulated. Two 2-parameter Weibull function was 
used as the components of the mixture distribution with a 
mixing proportion of 0.5. The Weibull function (Weibull, 
1951) is the most widely used distribution in tree size mod-
elling because of its relative flexibility, simplicity of model 
expression and ease of computation. The pdf and cdf of the 
Weibull mixture distribution are expressed as:

  
 

 
  







 





 
 

  







 





Eq. (9)

  
 






 




Eq. (10)

Where 1, 1=shape and scale parameters of the first 
component in the mixture distribution, 2 and 2=shape 
and scale parameters of the second component. Since the 
mixing proportion () was constrained to be 0.5, thus, the 
Weibull mixture distribution has four parameters.

Fitting and evaluation

The method of maximum likelihood (MLE) was used to 
fit the 4-parameter distributions and the finite mixture 
distributions. MLE involves taking the partial derivatives 
of the log-likelihood function with respect to the parameters 
of each distribution, equating the expression to zero and 
then solved by iterative algorithm. The location and range 
parameters were constrained to be minimum diame-
ter/height minus 0.5 and maximum diameter/height plus 
0.1. Similar constrain was used by Gorgoso-Varela et al. 
(2016). The distributions were fitted to the diameter and 
height data from each plot. The distributions were eval-
uated based on Kolmogorov-Smirnov (Dn) and negative 
loglikelihood values. The smaller the values of the fit in-
dices, the better the distribution. 

Dn=Supx|F(xi)−F0(xi)| Eq. (11)

Where supx is the supremum value for x; F(xi) is the cu-
mulative frequency distribution observed for the sample xi 
(i=1, 2, ..., n), F0(xi) is the probability of the theoretical cu-
mulative frequency distribution. Analysis was carried out in 
R (R Core Team 2017).

Modelling the diameter distribution with stand variables

The parameters of the mixture distribution were mod-
elled directly with stand variables and percentiles. This is 
the first attempt of modelling the parameters of mixture 
distribution with stand variable as much as we know. Stand 
variables such as stand age, stand density, basal area per ha, 
quadratic mean diameter, dominant height, variance of the 
diameter distribution and percentiles were used. The 
Seemingly Unrelated Regression (SUR) technique was 
used in this study. Prior to the application of SUR, the can-
didate models for each response variable (parameters and 
percentiles) were first identified. Thereafter, the models 
were simultaneously fitted using SUR. This system of 
equation is called disaggregation system (Gómez-García et 
al. 2014). The model structure for the system of equation in 
matrix form is given by:
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Table 2. Kolmogorov-Smirnov (Dn) and negative loglikelihood (-ΛΛ) values of the fitted distributions to diameter data

Plot
Kolmogorov-Smirnov (Dn) Negative loglikelihood (-ΛΛ)

GW SB LL GB FM GW SB LL GB FM

1 0.0881 0.0862 0.0819 0.0901 0.0695 156.113 156.019 155.848 156.11 155.756
2 0.0574 0.0577 0.0577 0.0578 0.0640 166.791 166.828 166.485 166.824 168.290
3 nf 0.1739 0.0949 nf 0.0971 nf 125.071 124.301 nf 125.030
4 0.0986 0.1019 0.0934 0.105 0.0784 138.972 138.971 139.052 139.141 136.013
5 0.1221 0.1292 0.1240 0.1267 0.1004 154.243 154.458 154.242 154.358 156.128
6 0.0862 0.0918 0.0850 0.0998 0.0670 204.287 204.464 203.944 204.667 202.052
7 0.0714 0.3585 nf nf 0.0817 155.156 154.632 nf nf 156.903
8 0.0979 0.1063 0.0846 0.1232 0.1106 150.257 150.526 149.990 151.111 149.717
9 nf 0.0774 0.0744 0.0823 0.0813 nf 164.447 163.940 163.436 169.905

10 0.0564 0.7200 0.0596 0.0662 0.0455 133.482 133.455 132.559 133.059 134.279
11 0.0959 0.0974 0.0932 0.1002 0.1145 130.040 130.106 130.116 130.335 133.224
12 0.0627 0.0616 0.0625 0.0664 0.0805 191.418 191.455 191.134 191.481 194.725
13 nf 0.1489 nf 0.0826 0.0710 nf 139.549 nf 139.074 142.068
14 0.0600 0.0622 0.0660 0.0628 0.0611 331.134 331.905 331.504 331.696 333.309
15 nf 0.1125 nf nf 0.0870 nf 138.808 nf nf 141.686
16 nf 0.3600 nf nf 0.1052 nf 147.500 nf nf 150.754
17 0.0912 0.0915 0.0938 0.0935 0.0847 240.850 240.946 240.194 240.909 240.329
18 nf 0.0660 0.0781 0.0904 0.0567 nf 139.658 139.031 138.848 142.797
19 0.1110 0.1035 0.1001 0.1034 0.1161 148.153 148.458 148.006 148.385 145.632
20 0.0957 0.1200 0.1007 0.0989 0.0721 150.961 150.824 150.592 150.719 149.353
21 nf 0.0834 0.0804 nf 0.0949 nf 151.518 151.071 nf 153.620
22 nf 0.6275 nf nf 0.0920 nf 129.324 nf nf 134.992
23 0.0631 0.0706 0.0668 0.0684 0.0775 177.982 178.523 178.302 178.286 180.998
24 nf 0.0927 0.0893 0.0868 0.0816 nf 172.044 171.204 171.569 176.446
25 0.0976 0.1282 0.1078 0.1109 0.0881 111.516 111.452 110.820 111.203 111.914
26 0.0647 0.0742 0.0760 0.074 0.0651 162.117 162.179 161.498 162.039 165.172
27 nf 0.5682 nf nf 0.1054 nf 120.104 nf nf 120.668
28 nf 0.1698 nf nf 0.1886 nf 160.374 nf nf 162.711
29 nf 0.2759 nf nf 0.0888 nf 164.980 nf nf 168.725
30 nf 0.3810 nf nf 0.0559 nf 173.825 nf nf 179.964
31 nf 0.4038 0.0607 nf 0.1509 nf 135.626 135.135 nf 138.676
32 0.0868 0.2222 nf nf 0.1073 127.950 127.360 nf nf 129.310
33 nf 0.4800 0.0601 nf 0.0600 nf 127.958 127.274 nf 131.127
34 nf 0.1387 nf nf 0.2207 nf 132.624 nf nf 134.302
35 0.1054 0.1008 0.1003 0.1032 0.0787 172.084 172.195 171.769 172.14 171.569

nf,  no fit.

y1=X1b1+1
          ⋮
y2=X2b2+2  Eq. (12)
          ⋮
yn=Xnbn+n

Where n=number of component model in the system of 

equation, y=response variable (the parameters of the 
Weibull mixture and percentiles); x=predictor variables 
(e.g., stand age, stand density, basal area per ha, quadratic 
mean diameter etc.); =error term which is assumed to be 
normal and independently distributed with zero mean and 
constant variance that is, ∼NID (0, 2 ). Prior to model 
development, 2 plots were set aside because there were few 
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Table 3. Kolmogorov-Smirnov (Dn) and negative loglikelihood values of the fitted distributions to height data

Plot
Kolmogorov-Smirnov (Dn) Negative loglikelihood (-ΛΛ)

GW SB LL GB FM GW SB LL GB FM

1 0.0717 0.0621 0.0747 0.069 0.0513 111.254 111.434 110.634 111.256 110.916
2 0.0738 0.0754 0.0674 0.0774 0.0673 135.011 135.118 134.867 135.175 133.663
3 0.0582 0.3478 0.0702 0.0788 0.0543 110.524 110.489 109.914 110.342 110.633
4 0.0630 nf 0.0620 0.1051 0.0576 106.143 104.724 104.363 105.005 105.073
5 0.0625 0.0607 0.0596 0.0601 0.0712 115.777 115.775 115.525 115.771 115.642
6 0.0512 0.1622 0.0550 nf 0.0446 185.415 185.000 184.598 nf 185.291
7 0.0931 0.6415 0.0762 0.0856 0.0529 137.313 136.590 136.222 136.475 135.409
8 0.0769 1.0000 0.0739 0.0745 0.0576 123.635 124.684 123.229 123.607 123.698
9 0.1008 nf 0.0915 0.0951 0.0583 139.211 139.193 137.985 138.418 138.176

10 0.0527 0.6000 0.0528 0.0569 0.0462 126.459 126.306 125.771 126.112 126.825
11 0.0627 0.0667 0.0605 0.0586 0.0686 96.164 96.345 96.027 96.353 96.428
12 0.0695 0.7619 0.0656 0.0868 0.0609 163.795 162.837 162.183 163.441 163.406
13 0.0781 0.5957 nf nf 0.0645 130.031 129.666 nf nf 131.100
14 0.0471 0.1192 0.0350 nf 0.0431 303.640 302.161 301.784 nf 302.779
15 0.0748 0.0872 0.0803 0.0859 0.0744 121.823 122.529 122.020 122.094 121.789
16 0.2641 0.6200 nf nf 0.1298 132.053 132.426 nf nf 132.677
17 0.0550 0.0529 0.0508 0.0583 0.0421 191.578 192.023 191.956 192.143 191.193
18 0.0474 0.3674 0.0505 0.0536 0.1513 110.217 110.159 109.879 110.115 114.090
19 0.0925 0.0710 0.0771 0.0875 0.0594 117.242 118.064 117.700 117.928 118.196
20 0.0864 0.7600 0.0799 0.0875 0.0644 117.588 117.187 116.593 116.833 118.014
21 0.0624 0.5192 0.0693 0.0653 0.0837 134.499 134.779 134.682 134.676 136.937
22 0.1041 0.1013 0.0971 nf 0.0928 140.721 140.588 140.595 nf 138.424
23 nf 0.1967 0.0727 0.0688 0.0949 nf 164.904 164.572 164.575 168.735
24 0.0613 0.0625 0.0612 0.0615 0.0715 133.523 133.658 133.547 133.609 135.078
25 0.0832 0.9231 0.0813 nf 0.0613 89.383 89.189 88.486 nf 90.165
26 0.1194 0.8113 nf nf 0.1330 133.736 131.515 nf nf 130.631
27 nf 0.2272 0.0730 0.0739 0.0801 nf 98.043 97.383 97.739 101.217
28 0.0865 0.5849 nf nf 0.0834 137.475 137.438 nf nf 140.730
29 nf 0.3965 0.1048 0.1187 0.1852 nf 148.649 147.930 147.738 158.054
30 0.0692 0.8571 0.0590 0.0569 0.1449 154.970 154.870 154.517 154.651 157.266
31 0.0524 0.9423 0.0590 0.0649 0.0497 106.570 106.261 105.621 105.842 106.829
32 0.0517 0.6667 0.0577 0.0583 0.0562 109.960 110.202 109.740 109.972 111.127
33 0.0573 nf 0.0608 0.0579 0.0565 103.140 nf 102.235 102.574 104.314
34 nf 0.9111 nf nf 0.1329 nf 105.781 nf nf 110.505
35 0.0560 0.3167 0.0540 0.0594 0.0539 149.717 150.176 149.684 150.029 151.067

nf, no fit.

data points (N=35 plots). The two plots were used to eval-
uate the models in the system. 

Richards height-diameter model was fitted to each plot 
data, this was used to estimate the mean height per diameter 
class wherein the stand volume was derived. The Richards 
function (Richards 1959) is expressed as:

H=bh+a(1−e−bD)c Eq. (13)

Where H=height; D=dbh; bh=breast height which 
was taken at 1.3 m above the ground, a and b=model 
parameters. The choice of Richards function stemmed 
from the fact that this function has the sigmoidal properties 
of monotonic, inflection point and asymptote (Lei and 
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Table 4. Developed system of equations and the fit indices

Model R2 RMSE Eq. no

=−0.079+0.983dg−4.728A−1 0.994 0.180 (14)

D5=−4.542+1.028dg−0.135
 0.857 0.885 (15)

D25=−3.153+1.098dg−0.129
 0.996 0.434 (16)

D50=−2.201+1.093dg−0.049
+0.426

 0.926 0.666 (17)

D70=1.699+0.996dg 0.872 0.842 (18)
D75=3.046+0.964dg 0.874 0.817 (19)
H75=−0.218+0.827Hd+0.077A 0.881 0.672 (20)
D95=1.619+1.107dg−0.175

 0.901 1.030 (21)

1=9.439−0.693H75+26.281

 0.338 2.655 (22)

1=27.406+1.321P25+1.308

 
 −20.451




 0.915 0.961 (23)

=15.193−0.124
−106040ShI 0.434 1.237 (24)

=4.764+1.704dg−0.614D50−4.928

 0.960 0.487 (25)

Parresol 2001). Several researchers have used the Richards 
function to model height-diameter relationship including 
Mehtӓtalo et al. (2015), Özҫelik et al. (2018) and Sharma 
et al. (2018).

Result and Discussion

Fits of the distribution

The Kolmogorov-Smirnov (Dn) and negative loglikeli-
hood (-ΛΛ) values of generalized Weibull (GW), 
Johnson’s SB (SB), Logit-Logistic (LL), generalized beta 
(GB) and finite mixture (FM) for fitting diameter and 
height distributions are presented in Tables 2 and 3. The re-
sults showed that FM had the smallest Dn and -ΛΛ values 
in some of the plots for diameter and height distributions. 
For example, FM had the smallest Dn value in 20 and 24 
out 35 plots for the diameter and height distributions, 
respectively. The performance of LL, GW and GB dis-
tributions was equally good and relatively the same. The SB 
distribution was the least performed distribution among 
others. Its indices were generally large. The flexibilities of 
the four 4-parameter distributions have been demonstrated 
in Wang and Rennolls (2005). They reported that the LL 
covers widest area in the skewness and kurtosis plane; the 

coverage of GB and SB are relatively the same. Distributions 
with such flexibility should be able to describe the wide va-
rieties of forest stand structure. 

Furthermore, the 4-parameter, especially, GW, LL and 
GB distributions had no result in some of the plots for both 
diameter and height. The number of plots in which no fit 
was recorded for GW, LL and GB were 16, 11 and 14, re-
spectively for diameter distribution. In the case of height 
distribution, no fit was recorded for GW, SB, LL and GB 
in 4, 1, 5 and 9 plots, respectively. Contrary to the 4-param-
eter distributions, the FM distribution had reasonable fit to 
the data from the 35 plots. The plots for which the 4-pa-
rameter distributions had no fit were either bimodal or 
heavily skewed. These irregularities can be associated with 
natural or anthropogenic activities such as bush burning, 
thinning, illegal exploitation and so on (Tsogt and Lin 
2012; Lin et al. 2016; Ogana 2018). Studies have shown 
that such data are best fitted with finite mixture distribution 
(e.g. Zhang et al. 2001; Liu et al. 2002; Zhang and Liu 
2006; Jaworski and Podlaski 2012; Tsogt and Lin 2012; 
Liu et al. 2014; Ogana 2018). The FM distribution used in 
this study did not only provide reasonable fits to these irreg-
ular plots data but also performed best in some of the plots 
that seems to have regular normal shape (Appendices A 
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Fig. 1. Number of trees and volume per ha against diameter derived from 
the system for plot 1.

Fig. 2. Number of trees and volume per ha against diameter derived from 
the system for plot 35.

and B). The teak plantation has been thinned and en-
croached by illegal loggers (Chukwu and Osho 2018); 
hence the reason for the irregular shape in some of the plots. 

From the foregoing discussion, it is obvious that 4-pa-
rameter distribution cannot describe all possible forest 
stand structure. Therefore, we conclude that whenever 
complex distribution is to be used for tree size distribution 
modelling, a simple finite mixture should be considered 
such as the simple two components 2-parmaeter Weibull 
mixture distribution with equal mixing proportion.

Modeling the diameter distribution with FM

Twelve models were developed in the system of equation – 
one for predicting mean diameter (equation 14), seven for 
predicting percentiles (equation 15 to 21) and four for pre-
dicting the parameters of the FM (equation 22 to 25) as 
shown in Table 4. In this system, the best prediction models 
for 1, 1, 2 and 2 were those involving dominant height 
(Hd), quadratic mean (dg), shape index (ShI), variance 
(), 5%, 25%, 75%, 95% of the diameter and 75% of the 
height distributions. The percentiles were predicted from 
dominant height, stand age (A), quadratic mean diameter 
and variance. The variance was derived as the difference 
between square quadratic mean and square arithmetic mean 

diameters (i.e., 

  ). The shape index was derived from 

basal per ha, number of tree per ha and the basal area of 

central diameter. The basal area of central diameter was tak-
en as the 70th percentile of the diameter distribution (van 
Laar and Akҫa 2007). Thus, the exogeneous variables 
(instrumental variables) were stand age, dominant height, 
basal area and number of trees per ha. The coefficient of de-
termination (R2) and root mean square error (RMSE) of 
the models in the system ranged from 0.337-0.994 and 
0.180-2.655, respectively. The standard errors of the pa-
rameters of the models were relatively low. The variance in-
flation factor (VIF) was generally low; as such, there was 
little or no autocorrelation in the independent variables. 

The system of equation was applied to predict the diame-
ter distribution of two independent plots (1 and 35) i.e., 
plots not included in developing the system. The results ob-
tained were comparable to the observed diameter dis-
tributions of the stand. The estimated number of trees per 
ha and volume per ha by diameter class for the two plots are 
presented in Figs. 1,  2. The mean height per diameter class 
used in computing volume was obtained from the fitted 
Chapman-Richards function (displayed on the graph). The 
two plots were not rejected by the Kolmogorov-Smirnov 
(Dn) test at 5% level (p＞0.05). 

This system of equation can be used to predict the future 
yield of the forest stand by first projecting the exogenous 
variables and then other variables can be derived. This is 
the first attempt of relating the parameters of FM dis-
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tribution with stand variables as much as we know. Most 
published literatures on yield system have been based on 
single component distribution of either Weibull, beta or 
Johnson’s SB distributions etc. For example, Stankova and 
Zlatanov (2010) used three methods including percen-
tile-based projection and a single component 2-parameter 
Weibull to model the diameter distribution of Pinus nigra 
Arn wherein good results were reported. Gómez-García et 
al. (2014) also developed a dynamic volume and biomass 
growth system of equation for birch stand. Similar ob-
servation was reported in Cao (2004), Poudel (2011) and 
Poudel and Cao (2013) where the authors used SUR to de-
velop system of equations. They incorporated a single com-
ponent Weibull distribution in the system. Furthermore, 
Gorgoso-Varela et al. (2008) developed a compatible system 
in which the two shape parameters of the beta distribution 
were derived from the first and second moments of the di-
ameter distribution i.e., average diameter and variance, 
respectively. The same procedure was used by Parresol 
(2003), Fonseca et al. (2009) and Mateus and Tomé (2011) 
for the Johnson’s SB distribution. The performance of these 
distributions especially the four-parameter functions cannot 
be overemphasized. However, these functions cannot 
uniquely describe the diameter distribution of heavily 
skewed or multimodal peaks. Application of single compo-
nent four-parameter distribution will result to poor fit or 
oversimplification of the tree size distribution (Tsogt and 
Lin 2012; Ogana 2018). In consequence, poor estimation 
of the forest stand volume. The predictions from FM were 
reasonable and outperformed other four-parameter dis-
tributions.

Conclusion

This study utilised the simplest form of finite mixture 
distribution – 2 components with equal mixing proportion 
(0.5) for modelling simple, complex, irregular or bimodal 
forest stand structure. The mixture model outperformed 
the four-parameter distribution functions in terms of their 
fitness to predict diameter and height structures of the dis-
turbed teak stand. Models for the parameters of the simple 
mixture distribution were developed with SUR technique 
and the predictions were reasonable and compare well with 
the observed distribution. This is the first attempt of relat-

ing the parameters of mixture distribution directly with 
stand variable as much as we know. The simplified mixture 
distribution can be used to model other tree variables e.g. 
crown diameter, crown surface area, basal area in the case of 
relaskop sampling, biomass, etc. in so far, the variable can 
be measured directly from the field. It can also be in-
tegrated as component model in stand density management 
diagram.
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