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The Null Distribution of the Likelihood Ratio Test for a
Mixture of Two Gammas
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Abstract

We investigate the distribution of likelihood ratio test(LRT) of null hypoth-
esis a sample is from single gamma with unknown shape and scale against
the alternative hypothesis a sample is from a mixture of two gammas, each
with unknown scale and unknown (but equal) scale. To obtain stable maxi-
mum likelihood estimates(MLE) of a mixture of two gamma distributions, the
EM(Dempster, Laird, and Rubin(1977))and Modified Newton(Jensen and Jo-
hansen(1991)) algorithms were implemented. Based on EM, we made a simple
structure likelihood equation for each parameter and could obtain stable so-
lution by Modified Newton Algorithms. Simulation study was conducted to
investigate the distribution of LRT for sample size n = 25, 50, 75, 100, 50, 200,
300, 400, 500 with 2500 replications.

To determine the small sample distribution of LRT, I considered the model
of a gamma distribution with shape parameter equal to 1 + f(n) and scale
parameter equal to 2.

The simulation results indicate that the null distribution is essentially in-
variant to the value of the shape parameter. Modeling of the null distribution
indicates that it is well approximated by a gamma distribution with shape pa-
rameter equal to the quantity 0.927 + 1.18/+/n and scale parameter equal to
2.16.

Key Words and Phrases: EM Algorithm, Modified Newton Algorithm, Finite
Mixture Models

1. Introduction

We consider the problem of testing the hypothesis that we have a single gamma
distribution versus a mixture of two gamma distributions. The problem arise in
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practice when failure can occur for more than one reason and the failure distribution
for each reason can be adequately approximated by a simple density function. The
overall failure distribution is then a mixture of gamma distributions.

There are three main problems that are encountered when developing an infer-
ence procedure for mixture distributions. The first is the problem of testing the
null hypothesis that a sample is from a single distribution against the alternative
hypothesis that a sample is from mixture. A natural candidate for a test statistic
1s the likelihood ratio test and this has been discussed by Wolfe (1970, 1971) and
Hasseblad (1969). The null hypothesis can be tested against the alternative hypoth-
esis by computing the likelihood ratio,\, given by A = Lo/L; provided we know the
sampling distribution of A under the null hypothesis. This distribution was studied
originally by Wilks(1938) who showed that under the regularity conditions —2log A
is asymptotically distributed as x? with degrees of freedom equal to the difference
in the number of parameters between the two hypotheses.

The second problem in considering mixture distribution is related to estimation.
There are both theoretical and practical difficulties in estimation of the parame-
ters of the mixture distribution. Theoretically, difficulties arise with multiple local
maxima of the likelihood surface. This problem is particularly troublesome because
the iterative maximization methods necessary to compute the maximum likelihood
may converge to a local rather than the global maximum. Practically, convergence
of the numerical procedure used to obtain estimates may be another issue. The -
computational procedures for obtaining maximum likelihood estimates for mixture
are usually fairly lengthy iterative processes that may not converge to an accept-
able solution. However, these computational difficulties seem to.have been resolved
somewhat with the application of the EM algorithm.

The EM algorithm is an iterative technique for computing maximum likelihood
estimates for incomplete data. The algorithm has been widely used in a variety
of settings, with early application to genetics, grouping and censoring, and missing
data. Dempster, Laird and Rubin (1977) gave a theoretical basis for the algorithm,
and named it EM since the two computational steps involve expectation and maxi-
mization. The phrase incomplete data is used quite broadly to represent variety of
situations, including mixtures, censored data and missing observations.

Finite mixture models have been widely studied and used in applications (Tit-
terington, Smith, and Markov, 1985). However only a few articles mention the
gamma mixture. The mixed gamma distribution does in medical science in the
study of ages of onset of autoimmune disease. Kanno (1982) studied maximum like-
lihood estimation of parameters for a mixture of two gamma distributions using the
Newton-Raphson method. Since the Newton-Raphson method was very sensitive
to initials values, he obtained the initial values by the method of moments. He
simplified the form of the Hessian matrix based on his assumption that the overlap
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is sufficiently small between component distributions so that all the elements which
contain multiple of estimates of mixing proportions would be zero in the Hessian
matrix. Without this assumption, he couldn’t get a simple form of the Hessian ma-
trix. Eventually he failed to obtain stable estimates. Because a gamma, distribution
has a long right tail, he couldn’t always have sufficiently small overlap.

For the case of a two-component gamma mixture with two unknown and unequal
shape parameter and unknown and equal scale parameters, detailed study has bean
conducted to obtain a stable algorithm for the MLE and to investigate the null
distribution of the LRT and its asymptotic properties.

2. Obtaining the MLE of the Parameters of the Two Component
Gamma Distribution Using an EM PLUS Modified Newton
Algorithm

The definitive reference for the Modified Newton Procedure applied to the deriva-
tive of reciprocal likelihood function in a one-dimensional exponential family is tae
paper by Jensen and Johansen (1991). In this paper they showed global conver-
gence under very general assumptions of iterative maximization procedures with
cyclic fixing of groups of parameters, maximizing over the remaining parameter.The
EM algorithm for finding the MLE is a powerful numerical technique useful for in-
complete data problems. The primary conceptual power of this iterative algorithm
lies in converting a maximization problem involving a complicated likelihood, into a
sequence of ” pseudo-complete” problems, where at each step the updated parameter
estimates can be in a closed form. Unlike the Newton-Raphson method, gradient
matrices don’t need to be derived. The definitive reference for the EM algorithm is
the paper by Dempster, Laird, and Rubin (1977). The general idea behind the EM
is to represent the observed data vector, y, as the realization of some incompletely
or indirectly observed data vector, say x, which we term the complete data. The
observed data y has density g(y|¥) where VU is the group of unknown parameters.

For a k component univariate gamma mixture, the observations {z1, 9, -, z,}
can be regarded as a sample of incomplete data by considering each x; to be the
known part of complete data y; = (z;, 2;). This emphasizes the interpretation of
mixture data as incomplete data, with the indicator vectors as missing values.

Based on complete data, the likelihood corresponding to (y1,¥2...,¥yn) can be
written as

n k
glyv v ual®) = [l 75 fiil;)7 (1)

i=1j=1

where f;(zi|6;) = W%mﬁ_afxaf_lezp(—%),
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With logarithm

n

Lo(¥) = 32TV (n) + 3" 2T U:(6) @
=1 .

1=1
where V (r) has the jth component log m; and U;(©) has the jth component log f;(x;]
©;).
The form of the mixture likelihood Lo(¥) corresponds to the marginal density
of x1,%s...,x, obtained by summing over zi,...,2,.
The EM algorithm generates, from some initial approximation, 0, 5 sequence
{\Il(m)} of estimtes. Each iteration consists of expectation and maximization step.

The expectation step, calculation of expectation of log-likelihood procedure is per-
formed as follows.

Q(T,¥™) = Ellogg(y|¥)|z, ¥(™]

= i E(z|z;, ™V () + f: E(zi|z;, ¥™)U;(©)

i=1 i=1
= Z ’wi(\I/(m))TV(ﬂ') + Z ’wi(‘I’(m))TUi(@)
i=1 i=1

where w;(¥(™) = E(z|z;, #™) © = {a1, a2, B}

(COPIRTNCD)
wi;(¥(m)) = [w;(T™)); = % is the probability of category member-

ship for the i-th the observation conditional on z; and given that the parameter is
U™ for each i, 5.

Next maximization Q(¥, ™) step to find ¥ = ¥{™+1) is done by maximizing
the quantities 37, w; (™) TV () and 37 ; w;(¥™)TU;(©) respectively. Thus for
each parameter the M-step is as follows.

1. M - step for m;
n n
E(zi|z;, ¥™) = Y B(%|9)
=1 i=1
n _
> wi(¥) =
=1

1 n
T = E Z ’LUU(\I/)
=1



The Null Distribution of the Likelihood Ratio Test

2. M - step for G;

3w (W)U (©)

=1

akn ()
a—ﬁjgz::\p)U

3. M - step for aj;

S wi( T e) =

o
il
._.

Let f(oy)
By The Newton Method

a F,m—+1

= Y wi(¥™)[-
i=1

= 3 wi(¥™)log f;(z:|0'™)

=1
n

log'(a;) — ajlog B

+(o; — 1) log z; — ﬂ]

= S-S5

j=1i=1

T wi(Wy
i1 S wi(P)d
Z?:l L1 wi(¥)T;

kA ~
Zj:l T

w; (U™ log fj(xi|@§-m))

M=

1

o~
It

w;(T™)[-log I'(aj) — a;log B

M=

ﬁ.
—

T;
+(a; — Dlo T, — —

= Y wi(¥™)[—p(ey) — log B + log z;]
=1
_ N PR wz(‘I’)log:vi
= —p(a;) —log B+ T (T)
= Qjm- fl(aj,m)
f(aj,m)
_ . Hoym)
— T G(aym)
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and by The Modified Newton
flojm)

Ajmt+1 = Qjm —

3. The Null Distribution of the LRT Under the Null Hypothesis of
a Single Gamma Distribution

3.1 Invariance of the LRT to the Shape Parameter o

As we know, the standard gamma density

a1

fx(z) = mexp(—:c), with a>0:2>0 (3)

is a special case of the two parameter gamma density with 8 = 1. Thus we can tell
clearly that the likelihood value depends on a from 3. So the distribution of the
likelihood ratio test statistic may depend on a.

To study whether the LRT depends on «, 2500 samples of size n = 100 from
a standard gamma were generated for a = 4, 8,12, 16, 20, 30, 40. The SAS function
UNIVARIATE was used to obtain the simulated mean, standard deviation, and
percentage points of the observed value of the LRT G%.,. We also considered the
possibility that the distribution of the LRT statistic, G2., is pseudo chisquare and
hence a gamma variable with shape parameter, g and scale parameter, 8 = 2.0.
Thus ag2  was estimated for each value of o

As we can see in Table 1, there is no clear trend in mean and variance of the
LRT statistic with respect to the « value. The Kruskal-Wallis test was done to test
whether the distribution has the same median across the o values. The test results
were significant at .05 level when we considered all a values. But the results were
not significant on comparing the distributions from a = 8,12, 30, 40. This supports
our conclusion that any dependency of G2, on « is very small and the distribution
can be considered as being essentially alpha invariant.
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Table 1.Comparison of the Null Distribution of the LRT Statistic for Different
Vahues of a

VALUE of SHAPE PARAMETER «

% |4 ] 8 [ 12 ] 16 | 20 | 30 | 40 | &
99 | 9.74 | 10.37 | 9.53 | 10.14 | 10.25 | 10.32 | 9.82 | 9.21
95 |6.49 | 657 | 6.55 | 6.56 | 7.15 | 6.52 | 6.62 | 5.99
90 |509| 499 | 5.07 | 519 | 553 | 5.06 | 5.14 | 4.60
75 | 3.2 | 3.02 | 3.08| 3.23 | 3.21 | 3.06 | 3.06 | 2.41
50 | 163 | 1.48 | 1.51 | 1.56 | 1.67 | 1.45 | 1.58 | 1.39
25 | 0.68 | 0.63 | 0.60 | 0.67 | 0.69 | 0.61 | 0.65 | 0.56
10 [025] 025 | 0.2 | 0.23 | 0.23 | 0.2 | 024021
5 |012] 013 |009] 009 | 0.1 | 0.1 |012] 01
1 [ 0.01] 0.03 |0.01] 002 | 0.01 | 0.01 | 0.02|0.02
mean | 2.25 | 2.18 | 2.17 | 2.26 | 2.34 | 2.18 | 2.22 | 2.0
se |211| 231 |2.13| 2.2 | 2.26 | 2.34 | 2.18 | 20

3.2 Modeling the Null Distribution of the LRT

To determine the small sample distribution of G%,,, the 2500 samples of G2,
calculated for each sample size of n = 25,50, 75, 100, 150, 200, 300, 400, 500 were
subdivided into 5 subgroups, stratified by their order of occurrence during the gen-
eration of the samples. Then the MEL’s of age, and ﬂciz were computed for each
subgroup and sample size.

We fixed [3 = 2.16, the observed median of the B, MEL of & were computed
for each subsample, because the estimates & are function of sample size and the
estimates of B are independent of sample size.

Since the &, were decreasing as sample size increase, the 45 obtained values of &
were regressed on the quantity (%)t fort =0.5,1,2. Fort = 0.5, the observed R? was
0.75 and F' = 122.62, P-value= 0.0001. The lack of fit statistics is not significant at
the P = 0.05 level. The results R? = .75 from the regression show that the model
for & fits very well to data. For ¢ = 0.5, the estimated regression equation is

1.18
A, = 0.927 4+ —
& + T 4)

B = 216 (5)

The fitted percentage points of I'(a, 2.16) for n = 25, 50, 75, 100, 150, 200, 300, 400, 500
are given in Table 2.
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Table 2. Fitted Percentage of Null Distribution of LRT

SAMPLE SIZE
% 25 50 75 100 150 | 200 | 300 | 400 | 500 | x5

0.99 1 10.72 | 10.39 | 10.24 | 10.17 | 10.05 | 9.99 | 9.92 | 9.88 | 9.85 | 9.12
095| 713 | 6.84 | 6.72 | 6.65 | 6.55 | 6.51 | 6.45 | 6.41 | 6.38 | 6.03
090 | 556 | 530 | 519 | 514 | 504 | 501 | 495 |4.92 | 4.89 | 4.71
0.75 | 346 | 3.26 | 3.17 | 3.12 | 3.05 | 3.02 | 2.97 [ 2.95 | 2.93 | 2.85
050 | 1.83 | 1.68 | 1.62 | 1.59 | 1.53 |[1.51 | 1.48 | 1.46 | 1.45 | 1.48
025} 082 | 0.73 | 0.69 | 0.67 | 0.64 | 0.63 | 0.61 [ 0.60 | 0.59 | 0.6
010 0.34 | 0.28 | 0.26 | 0.25 | 0.24 | 0.23 | 0.22 | 0.21 | 0.20 | 0.16
0.05{ 0.18 | 0.14 | 0.13 | 0.12 | 0.11 | 0.11 | 0.10 | 0.10 | 0.10 | 0.07
0.01 |0.044 | 0.03 | 0.02 | 0.02 | 0.02 | 0.02 | 0.02 | 0.02 | 0.019 | 0.02

3.3 Goodness of Fit of Null Distribution of LRT

The Kolmogorov-Smirnov goodness-of-fit test*(one-sample test) is applicable to
2500 ungrouped measurements and the null hypothesis simulated samples from a
gamma, distribution with & and B from the estimated equation for each sample size.
A central feature of the K-S test is that it is invariant under the reparameterization
of x.

As you see in Table 3, the K-S test results were none significant at the 0.1 level
for the all sample sizes. Thus based on this test we conclude that the GAM(0.927
+ 1/4/n,2.186) is appropriate for approximating the null distribution of the LRT.

Table 3. Goodness of Fit of GAM(0.927 + 1.18/n)

| Samplesize | o | B | D, [P-Value]|

25 1.16 | 2.16 | 0.0127 0.8

50 1.09 | 2.16 | 0.023 0.12
75 1.06 | 2.16 | 0.0237 | 0.117
100 1.045 | 2.16 | 0.024 0.103
150 1.02 | 2.16 | 0.0168 0.47
200 1.01 | 2.16 | 0.0217 | 0.207
300 0.995 | 2.16 | 0.0227 0.18
400 0.986 | 2.16 | 0.0185 0.35
500 0.98 | 2.16 | 0.0233 | 0.118
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4. Conclusions

We successfully found a stable maximization algorithm by applying the EM
algorithm. Because the EM algorithm does not require us to calculate gradients in
each iterative step, the derivatives of log-likelihood function of gamma mixture is
pretty simple for each parameter.

Before investigating the distribution of LRT, we checked the invariance of the
LRT to o. We conclude that the dependency of the LRT on « is very small.

Based on a regression analysis of these simulated results, the asymptotic null
distribution of LRT is a gamma distribution with shape parameter equal to 0.927
and scale parameter equal to 2.16. We give tables of the percentage points of tke
LRT based on the model. The relative error between percentage points of simulation
and expectation were extremely small. In addition to this, we show the results of
K-S goodness of fit (one sample) test for expected parameter value. The test results
were not significant for the all sample sizes. This means estimated parameter value
is appropriate for the all samples. Distribution of LRT is GAM(0.927+1/./n, 2.16).
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