• Title/Summary/Keyword: finite domain

Search Result 1,550, Processing Time 0.024 seconds

Stability of a cylindrical shell with an oblique end

  • Hu, X.J.;Redekop, D.
    • Structural Engineering and Mechanics
    • /
    • v.19 no.1
    • /
    • pp.43-53
    • /
    • 2005
  • The linearized buckling problem is considered for an isotropic clamped-clamped cylindrical shell with an oblique end. A theoretical solution based on the Budiansky shell theory is developed, and numerical results are determined using the differential quadrature method. In formulating the solutions, the surface of the shell is developed onto a plane, and the resulting irregular domain is then mapped, using blending functions, onto a square parent domain. The analysis is carried out in the parent domain. Convergence, validation, and parametric studies are conducted for a uniform external pressure loading. Results determined are compared with finite element results. The paper ends with an appropriate set of conclusions.

CHARACTERIZATION OF PRIME SUBMODULES OF A FREE MODULE OF FINITE RANK OVER A VALUATION DOMAIN

  • Mirzaei, Fatemeh;Nekooei, Reza
    • Journal of the Korean Mathematical Society
    • /
    • v.54 no.1
    • /
    • pp.59-68
    • /
    • 2017
  • Let $F=R^{(n)}$ be a free R-module of finite rank $n{\geq}2$. In this paper, we characterize the prime submodules of F with at most n generators when R is a $Pr{\ddot{u}}fer$ domain. We also introduce the notion of prime matrix and we show that when R is a valuation domain, every finitely generated prime submodule of F with at least n generators is the row space of a prime matrix.

ON v-MAROT MORI RINGS AND C-RINGS

  • Geroldinger, Alfred;Ramacher, Sebastian;Reinhart, Andreas
    • Journal of the Korean Mathematical Society
    • /
    • v.52 no.1
    • /
    • pp.1-21
    • /
    • 2015
  • C-domains are defined via class semigroups, and every C-domain is a Mori domain with nonzero conductor whose complete integral closure is a Krull domain with finite class group. In order to extend the concept of C-domains to rings with zero divisors, we study v-Marot rings as generalizations of ordinary Marot rings and investigate their theory of regular divisorial ideals. Based on this we establish a generalization of a result well-known for integral domains. Let R be a v-Marot Mori ring, $\hat{R}$ its complete integral closure, and suppose that the conductor f = (R : $\hat{R}$) is regular. If the residue class ring R/f and the class group C($\hat{R}$) are both finite, then R is a C-ring. Moreover, we study both v-Marot rings and C-rings under various ring extensions.

FINITE ELEMENT ANALYSIS FOR DISCONTINUOUS MAPPED HEXA MESH MODEL WITH IMPROVED MOVING LEAST SQUARES SCHEME

  • Tezuka, Akira;Oishi, Chihiro;Asano, Naoki
    • Proceedings of the Korea Society for Simulation Conference
    • /
    • 2001.10a
    • /
    • pp.373-379
    • /
    • 2001
  • There is a big issue to generate 3D hexahedral finite element (FE) model, since a process to divide the whole domain into several simple-shaped sub-domains is required before generating a continuous mesh with mapped mesh generators. In general, it is nearly impossible to set up proper division numbers interactively to keep mesh connectivity between sub-domains on a complicated arbitrary-shaped domain. If mesh continuity between sub-domains is not required in an analysis, this complicated process can be omitted. Element-free Galerkin method (EFGM) can accept discontinuous meshes, which only requires nodal information. However it is difficult to choose a reasonable influenced domain in moving least squares scheme with non-uniformly distributed nodes in discontinuous FE models. A new FE scheme fur discontinuous mesh is proposed in this paper by applying improved EFGM with some modification to derive FE approximated function in discontinuous parts. Its validity is evaluated on linear elastic problems.

  • PDF

Radio wave propagation simulations of indoor by finite difference time domain method (실내 전파 차분의 시간영역 유한차분법에 의한 계산)

  • 허문만;백낙준;박항구;윤현보
    • Journal of the Korean Institute of Telematics and Electronics D
    • /
    • v.34D no.10
    • /
    • pp.60-67
    • /
    • 1997
  • This paper presents a 3-D finite difference time domain (FDTD) method used for indoor propagation simulations where the electromagnetic wav eis uniformly excited on th eone of the wall in a building and affected by an indoor obstacles. In cases of simulation and measurement, the frequency of 851 MHz is used. The conductivities of walls, floor, ceiling and indoor obstacles are measured and used for simulations. These simulations are carried out using different boundary condition such as mur's absorbing boundary condition (ABC) and perfectly matched layer (PML) technique. The PML technique is found to be well-suited to this analysis because of it's smaller computational domain than mur's ABC. The measured signal strengths are compared to simulated values with good agreement.

  • PDF

An Improved Finite Element Method by Adding Arbitrary Nodes in a Domain (임의의 절점 추가에 의한 개선 유한요소법)

  • Kim, Hyun-Gyu
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.12 s.255
    • /
    • pp.1626-1633
    • /
    • 2006
  • In the present paper, in the context of the meshless interpolation of a moving least squares (MLS) type, a novel method which uses primary and secondary nodes in the domain and on the global boundary is introduced, in order to improve the accuracy of solution. The secondary nodes can be placed at any location where one needs to obtain a better resolution. The support domains for the shape functions in the MLS approximation are defined from the primary nodes, and the secondary nodes use the same support domains. The shape functions based on the MLS approximation, in an integration domain, have a single type of a rational function, which reduces the difficulty of numerical integration to evaluate the weak form. The present method is very useful in an adaptive calculation, because the secondary nodes can be easily added and moved without an additional mesh. Several numerical examples are presented to illustrate the effectiveness of the present method.

Development of interface elements for the analysis of fluid-solid problems (유체-고체 상호작용 해석을 위한 계면요소의 개발)

  • Kim, Hyun-Gyu
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.442-447
    • /
    • 2008
  • This paper presents a new approach to simulate fluid-solid interaction problems involving non-matching interfaces. The coupling between fluid and solid domains with dissimilar finite element meshes consisting of 4-node quadrilateral elements is achieved by using the interface element method (IEM). Conditions of compatibility between fluid and solid meshes are satisfied exactly by introducing the interface elements defined on interfacing regions. Importantly, a consistent transfer of loads through matching interface element meshes guarantees the present method to be an efficient approach of the solution strategy to fluid-solid interaction problems. An arbitrary Lagrangian-Eulerian (ALE) description is adopted for the fluid domain, while for the solid domain an updated Lagrangian formulation is considered to accommodate finite deformations of an elastic structure. The stabilized equal order velocity-pressure elements for incompressible flows are used in the motion of fluids. Fully coupled equations are solved simultaneously in a single computational domain. Numerical results are presented for fluid-solid interaction problems involving nonmatching interfaces to demonstrate the effectiveness of the methodology.

  • PDF

ON BOUNDARY REGULARITY OF HOLOMORPHIC CORRESPONDENCES

  • Ourimi, Nabil
    • Journal of the Korean Mathematical Society
    • /
    • v.49 no.1
    • /
    • pp.17-30
    • /
    • 2012
  • Let D be an arbitrary domain in $\mathbb{C}^n$, n > 1, and $M{\subset}{\partial}D$ be an open piece of the boundary. Suppose that M is connected and ${\partial}D$ is smooth real-analytic of finite type (in the sense of D'Angelo) in a neighborhood of $\bar{M}$. Let f : $D{\rightarrow}\mathbb{C}^n$ be a holomorphic correspondence such that the cluster set $cl_f$(M) is contained in a smooth closed real-algebraic hypersurface M' in $\mathbb{C}^n$ of finite type. It is shown that if f extends continuously to some open peace of M, then f extends as a holomorphic correspondence across M. As an application, we prove that any proper holomorphic correspondence from a bounded domain D in $\mathbb{C}^n$ with smooth real-analytic boundary onto a bounded domain D' in $\mathbb{C}^n$ with smooth real-algebraic boundary extends as a holomorphic correspondence to a neighborhood of $\bar{D}$.

On the Modeling of Dynamic Systems

  • Suk, Jinyoung;Kim, Youdan
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.2 no.1
    • /
    • pp.78-92
    • /
    • 2001
  • In this paper, several dynamic systems are modeled using the time domain finite element method. Galerkins' Weak Principle is used to model the general second-order mechanical system, and is applied to a simple pendulum dynamics. Problems caused by approximating the final momentum are also investigated. Extending the research, some dynamic analysis methods are suggested for the hybrid coordinate systems that have both slew and flexible modes. The proposed methods are based on both Extended Hamilton's Principle and Galerkin's Weak Principle. The matrix wave equation is propagated in space domain, satisfying the geometric/natural boundary conditions. As a result, the flexible motion can be obtained compatible with the applied control input. Numerical example is shown to demonstrate the effectiveness of the proposed modeling methods for the hybrid coordinate systems.

  • PDF

A Simple Method to Reduce the Splitting Error in the LOD-FDTD Method

  • Kong, Ki-Bok;Jeong, Myung-Hun;Lee, Hyung-Soo;Park, Seong-Ook
    • Journal of electromagnetic engineering and science
    • /
    • v.9 no.1
    • /
    • pp.12-16
    • /
    • 2009
  • This paper presents a new iterative locally one-dimensional [mite-difference time-domain(LOD-FDTD) method that has a simpler formula than the original iterative LOD-FDTD formula[l]. There are fewer arithmetic operations than in the original LOD-FDTD scheme. This leads to a reduction of CPU time compared to the original LOD-FDTD method while the new method exhibits the same numerical accuracy as the iterative ADI-FDTD scheme. The number of arithmetic operations shows that the efficiency of this method has been improved approximately 20 % over the original iterative LOD-FDTD method.