Acknowledgement
Supported by : King Saud University
References
- B. Ayed and N. Ourimi, Analytic continuation of holomorphic mappings, C. R. Math. Acad. Sci. Paris 347 (2009), no. 17-18, 1011-1016. https://doi.org/10.1016/j.crma.2009.07.001
-
B. Ayed and N. Ourimi, A Local extension of proper holomorphic maps between some unbounded domains in
$C^{n}$ , Bull. Belg. Math. Soc. Simon Stevin 17 (2010), no. 3, 513-534. - M. S. Baouendi and L. P. Rotshschild, Germs of CR maps between real analytic hyper-surfaces, Invent. Math. 93 (1998), no. 3, 481-500.
- M. S. Baouendi and L. P. Rotshschild, Images of real hypersurfaces under holomorphic mappings, J. Differential Geom. 36 (1992), no. 1, 75-88. https://doi.org/10.4310/jdg/1214448443
- F. Berteloot and A. Sukhov, On the continuous extension of holomorphic correspon-dences, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 24 (1997), no. 4, 747-766.
- E. M. Chirka, Complex Analytic Sets, Kluwer Academic Publishers, 1989.
- S. Chern and J. Moser, Real hypersurfaces in complex manifolds, Acta Math. 133 (1974), 219-271. https://doi.org/10.1007/BF02392146
-
K. Diederich and J. E. Fornaess, Proper holomorphic mappings between real-analytic pseudoconvex domains in
$C^n$ , Math. Ann. 282 (1988), no. 4, 681-700. https://doi.org/10.1007/BF01462892 - K. Diederich and S. Pinchuk, Analytic sets extending the graphs of holomorphic mappings, J. Geom. Anal. 14 (2004), no. 2, 231-239. https://doi.org/10.1007/BF02922070
- K. Diederich and S. Pinchuk, Proper holomorphic maps in dimension 2 extend, Indiana Univ. Math. J. 44 (1995), no. 4, 1089-1126.
- K. Diederich and S. Pinchuk, Regularity of continuous CR maps in arbitrary dimension, Mich. Math. J. 51 (2003), no. 1, 111-140. https://doi.org/10.1307/mmj/1049832896
-
K. Diederich and J. Fornaess, Proper holomphic mapping between real-analytic pseudo- convex domains in
, Math. Ann. 282 (1988), no. 4, 681-700. https://doi.org/10.1007/BF01462892 - K. Diederich and S. Webster, A reflection principle for degenerate real hypersurfaces, Duke Math. J. 47 (1980), no. 4, 835-845. https://doi.org/10.1215/S0012-7094-80-04749-3
- J. Merker and E. Porten, On wedge extendability of CR-meromorphic functions, Math. Z. 241 (2002), no. 3, 485-512. https://doi.org/10.1007/s00209-002-0426-6
- S. Pinchuk, On holomorphic maps of real-analytic hypersurfaces, Math. USSR Sb. 34 (1978), 503-519. https://doi.org/10.1070/SM1978v034n04ABEH001224
- S. Pinchuk, Analytic continuation of holomorphic mappings and the problem of holomorphic classification of multidimensional domains, Doctoral dissertation (habilitation), Moscow State Univ., 1980.
- S. Pinchuk and K. Verma, Analytic sets and the boundary regularity of CR mappings, Proc. Amer. Math. Soc. 129 (2001), no. 9, 2623-2632. https://doi.org/10.1090/S0002-9939-01-05970-6
- R. Shafikov, Analytic continuation of germs of holomorphic mappings, Mich. Math. J. 47 (2000), no. 1, 133-149. https://doi.org/10.1307/mmj/1030374673
-
R. Shafikov, Analytic continuation of holomorphic correspondences and equivalence of domains in
$C^n$ , Invent. Math. 152 (2003), no. 3, 665-682. https://doi.org/10.1007/s00222-002-0282-3 - R. Shafikov, On boundary regularity of proper holomorphic mappings, Math. Z. 242 (2002), no. 3, 517-528. https://doi.org/10.1007/s002090100355
-
R. Shafikov and K. Verma, A local extension theorem for proper holomorphic mappings in
$C^2$ , J. Geom. Anal. 13 (2003), no. 4, 697-714. https://doi.org/10.1007/BF02921885 - R. Shafikov and K. Verma, Extension of holomorphic maps between real hypersurfaces of different dimension, Ann. Inst. Fourier, Grenoble 57 (2007), no. 6, 2063-2080. https://doi.org/10.5802/aif.2324
-
R. Shafikov and K. Verma, Boundary regularity of correspondences in
$C^n$ , Proc. Indian Acad. Sci. (Math. Sci.) 116 (2006), no. 1, 59-70. https://doi.org/10.1007/BF02829739 -
K. Verma, Boundary regularity of correspondences in
$C^2$ , Math. Z. 231 (1999), no. 2, 253-299. https://doi.org/10.1007/PL00004728 - S. M. Webster, On the mapping problem for algebraic real hypersurfaces, Invent. Math 43 (1977), no. 1, 53-68. https://doi.org/10.1007/BF01390203