• Title/Summary/Keyword: feedback gain

Search Result 806, Processing Time 0.025 seconds

Robust and Non-fragile $H^{i~}$ State Feedback Controller Design for Time Delay Systems

  • Cho, Sang-Hyun;Kim, Ki-Tae;Park, Hong-Bae
    • International Journal of Control, Automation, and Systems
    • /
    • v.1 no.4
    • /
    • pp.503-510
    • /
    • 2003
  • This paper describes the synthesis of robust and non-fragile $H^{i~}$state feedback controllers for linear varying systems with time delay and affine parameter uncertainties, as well as static state feedback controller with structural uncertainty. The sufficient condition of controller existence, the design method of robust and non-fragile $H^{i~}$static state feedback controller, and the region of controllers satisfying non-fragility are presented. Also, using some change of variables and Schur complements, the obtained conditions can be rewritten as parameterized Linear Matrix Inequalities (PLMIs), that is, LMIs whose coefficients are functions of a parameter confined to a compact set. We show that the resulting controller guarantees the asymptotic stability and disturbance attenuation of the closed loop system in spite of time delay and controller gain variations within a resulted polytopic region.

A Transformer Feedback CMOS LNA for UWB Application

  • Jeon, Ji Yeon;Kim, Sang Gyun;Jung, Seung Hwan;Kim, In Bok;Eo, Yun Seong
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.16 no.6
    • /
    • pp.754-759
    • /
    • 2016
  • A transformer feedback low-noise amplifier (LNA) is implemented in a standard $0.18{\mu}m$ CMOS process, which exploits drain-to-gate transformer feedback technique for wideband input matching and operates across entire 3~5 GHz ultra-wideband (UWB). The proposed LNA achieves power gain above 9.5 dB, input return loss less than 15.0 dB, and noise figure below 4.8 dB, while consuming 8.1 mW from a 1.8-V supply. To the authors' knowledge, drain-to-gate transformer feedback for wideband input matching cascode LNA is the first adopted technique for UWB application.

Scheduling and Feedback Reduction in Coordinated Networks

  • Bang, Hans Jorgen;Orten, Pal
    • Journal of Communications and Networks
    • /
    • v.13 no.4
    • /
    • pp.339-344
    • /
    • 2011
  • Base station coordination has received much attention as a means to reduce the inter-cell interference in cellular networks. However, this interference reducing ability comes at the expense of increased feedback, backhaul load and computational complexity. The degree of coordination is therefore limited in practice. In this paper, we explore the trade-off between capacity and feedback load in a cellular network with coordination clusters. Our main interest lies in a scenario with multiple fading users in each cell. The results indicate that a large fraction of the total gain can be achieved by a significant reduction in feedback. We also find an approximate expression for the distribution of the instantaneous signal to interference-plus-noise ratio (SINR) and propose a new effective scheduling algorithm.

Control of Inverted Pendulum Systems Using a State Observer (상태관측기를 이용한 도립진자 시스템의 제어)

  • Lee, Yun-Hyung;Ahn, Jong-Kap;Jin, Gang-Gyoo;So, Myung-Ok
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.31 no.4
    • /
    • pp.462-467
    • /
    • 2007
  • The design and synthesis of a state feedback controller assumes the feedback of all state variables of the system. However, some state variables are not physical quantifies so that sensors may not be available, or may be too expensive to measure. Hence, a state observer can be an alternative to estimate unmeasurable state variables. This paper therefore presents a scheme for state observer-based stabilization control of inverted pendulum systems. The feedback gain matrices of both the state feedback controller and the state observer are tuned by real-coded genetic algorithms(RCGAs) such that the given performance indices are minimized. The proposed method is demonstrated through simulations.

Robust Controller Design for Non-square Linear Systems Using a Passivation Approach (수동화 기법에 의한 비정방 선형 시스템의 강인 제어기 설계)

  • 손영익
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.8 no.11
    • /
    • pp.907-915
    • /
    • 2002
  • We present a state-space approach to design a passivity-based dynamic output feedback control of a finite collection of non-square linear systems. We first determine a squaring gain matrix and an additional dynamics that is connected to the systems in a feedforward way, then a static passivating (i.e. rendering passive) control law is designed. Consequently, the actual feedback controller will be the static control law combined with the feedforward dynamics. A necessary and sufficient condition for the existence of the parallel feedfornward compensator (PFC) is given by the static output feedback fomulation, which enables to utilize linear matrix inequality (LMI). The effectiveness of the proposed method is illustrated by some examples including the systems which can be stabilized by the proprotional-derivative (PD) control law.

Reverse Analysis on a Direct Dive Servo Valve with Electric Feedback (전기 피드백 직동형 서보 밸브에 관한 역 분석)

  • Kim, S.D.;Ahn, H.W
    • Journal of Drive and Control
    • /
    • v.10 no.4
    • /
    • pp.22-28
    • /
    • 2013
  • Mechanical and electrical properties of a DDV(Direct Drive servo Valve) with electric feedback are analysed via reverse analysis technique in this work. The DDV is disassembled and mechanical parameters, such as spool mass, spring stiffness and port size are identified. The servo amplifier, which is built in the valve, is reversely analysed and the control scheme and gains for several control actions are also identified. The electrical feedback for spool displacement improves much better the valve performance, such as hysteresis and dynamic bandwidth frequency, than an ordinary mechanical feedback valve. Integrating control action with very large gain was adopted in the valve amplifier, and it seemed to give high performance.

A Robust Output Feedback Control of Robot Manipulators with Integral Action (적분작용을 포함하는 로봇 매니퓰레이터의 출력궤환 강인제어)

  • Shin, Eui-Seok;Lee, Kang-Woong
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.37 no.1
    • /
    • pp.1-9
    • /
    • 2000
  • In this paper, we design a robust output feedback controller for robot manipulators with bounded parametric uncertainties using high-gain observer. The proposed control scheme with integral action improves tracking error due to limit of the robust feedback gains. High-gain observer is used to solve the noise problem with the joint velocity measurement. This controller avoids the limitation on the variation of unknown parameters and guarantees the uniformly ultimate boundedness of the closed-loop system. The performance of the proposed method is demonstrated by simulation on a 2-link manipulator.

  • PDF

Design and Analysis of a Switching State Feedback Controller to Reduce the Measurement Error Effect for a Chain of Integrators System under AC and DC Noise (AC와 DC 노이즈가 있는 적분기 시스템에서 측정에러의 영향을 감소시키는 스위칭 상태 궤환 제어기의 설계 및 분석)

  • Oh, Sang-Young;Choi, Ho-Lim
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.20 no.1
    • /
    • pp.12-17
    • /
    • 2014
  • In this paper, we propose a controller capable of reducing the effect of measurement errors under AC and DC noise. Typically, the control system measures data through a sensor. If sensor noise is included in a controller via the feedback channel, the signal is distorted and the entire system cannot work normally. Therefore, some appropriate action to counter the measurement error effect is essential in the controller design. Our controller is equipped with a gain-scaling factor and a compensator to reduce the effect of measurement error in the feedback signal. Also, we use a switching control strategy to enhance the performance of the controller regarding convergence speed. Our proposed controller can therefore effectively reduce the AC and DC noise of the sensor. We analyze the proposed controller by Laplace transform technique and our control method is verified via MATLAB simulation.

Performance Analysis of MU-MIMO employing differential Precoding (차등 선부호화 기법을 적용한 MU-MIMO 시스템의 성능분석)

  • Gu, Qing;Park, Noe-Yoon;Li, Xun;Kim, Young-Ju
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.48 no.10
    • /
    • pp.1-6
    • /
    • 2011
  • In this paper, the sum-rate and BER performances of MU-MIMO system employing quantized differential feedback technique are analyzed over temporrally correlated channels. Several differential codebooks are assumed in the analysis such as quasi-diagonal codebook, spherical cap codebook, and differential equal gain codebook. The simulation results indicates that the system employing quantized differential feedback technique provides significant performance improvement. The performance improved 0.6bps/Hz at least in terms of sum-rate, and 4dB power gain is provided in terms of average BER.

A 77 GHz 3-Stage Low Noise Amplifier with Cascode Structure Utilizing Positive Feedback Network using 0.13 μm CMOS Process

  • Lee, Choong-Hee;Choi, Woo-Yeol;Kim, Ji-Hoon;Kwon, Young-Woo
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.8 no.4
    • /
    • pp.289-294
    • /
    • 2008
  • A 77 GHz 3-stage low noise amplifier (LNA) employing one common source and two cascode stages is developed using $0.13{\mu}m$ CMOS process. To compensate for the low gain which is caused by lossy silicon substrate and parasitic element of CMOS transistor, positive feedback technique using parasitic inductance of bypass capacitor is adopted to cascode stages. The developed LNA shows gain of 7.2 dB, Sl1 of -16.5 dB and S22 of -19.8 dB at 77 GHz. The return loss bandwidth of LNA is 71.6 to 80.9 GHz (12%). The die size is as small as $0.7mm\times0.8mm$ by using bias line as inter-stage matching networks. This LNA shows possibility of 77 GHz automotive RADAR system using $0.13{\mu}m$ CMOS process, which has advantage in cost compared to sub-100 nm CMOS process.