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Robust and Non-fragile H'~ State Feedback
Controller Design for Time Delay Systems

Sang-Hyun Cho, Ki-Tae Kim, and Hong-Bae Park

Abstract: This paper describes the synthesis of robust and non-fragile H' state feedback
controllers for linear varying systems with time delay and affine parameter uncertainties, as
well as static state feedback controller with structural uncertainty. The sufficient condition of
controller existence, the design method of robust and non-fragile H' static state feedback
controller, and the region of controllers satisfying non-fragility are presented. Also, using some
change of variables and Schur complements, the obtained conditions can be rewritten as
parameterized Linear Matrix Inequalities (PLMlIs), that is, LMIs whose coefficients are
functions of a parameter confined to a compact set. We show that the resulting controller
guarantees the asymptotic stability and disturbance attenuation of the closed loop system in
spite of time delay and controller gain variations within a resulted polytopic region.

Keywords: Non-fragile control, robust H' control, time delay, state feedback, Parameterized

Linear Matrix Inequality.

1. INTRODUCTION

It is generally known that feedback systems
designed for robustness with respect to plant
parameters, or for optimization of a single
performance measure, may require very accurate
controllers [1]. An implicit assumption that is
inherent to those control methodologies is that the
controller is designed to be implemented precisely.
However, the controller implementation is subject to
A/D conversion, D/A conversion, finite word length
and round-off errors in numerical computations, in
addition to the requirement of providing the
practicing engineer with safe-tuning margins.
Therefore, it is necessary that any controller should
be able to tolerate some uncertainty in the controller
as well as in the plant [1-9].

In a recent paper, Keel ef al. [8] have shown that
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the resulting controllers exhibit a poor stability
margin if not implemented exactly. Consequently,
some researchers have developed non-fragile
controller design algorithms. Dorato et al. [1]
proposed a non-fragile controller design method via
symbolic quantifier elimination. And Haddad et al.
[5] proposed a robust resilient dynamic controller via
quadratic Lyapunov bounds. Famularo ef al. [4] and
Jadbabie ef al. [6] considered an LQ robust and non-
fragile state feedback controller. However, recent
researchers have not taken into account the structure
of controller gain variations, the value of non-fragility,
or the effect of disturbances, non-fragility, and time
delay occurring simultaneously. Therefore, our
objective is to extend the non-fragile control problem
into a robust and non-fragile H' controller design
[10] case considering time delay and to obtain a set
of controllers that satisfies non-fragility.

In this paper, we propose the synthesis of robust
and non-fragile H' state feedback controllers for
linear systems with affine parameter uncertainties and
time delay in state, as well as a static state feedback
controller with polytopic uncertainty. Further, the
sufficient condition of controller existence, the design
method of the robust and non-fragile H' static state
feedback controller, and the region of controllers that
satisfies non-fragility are presented. The sufficient
condition is presented using PLMlIs, that is, LMIs
whose coefficients are functions of a parameter
confined to a compact set. However, in contrast to
LMIs, PLMI feasibility problems involve an infinite
number of LMIs, hence are inherently difficult to
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solve numerically. Therefore, PLMIs are transformed
into a finite number of LMI problems through the use
of relaxation techniques [11, 12].

The paper is structured as follows. The definition
of PLMI and basic lemma are described in section 2
while Section 3 discusses robust and non-fragile
H”controller synthesis. A numerical example
illustrating robustness and disturbance attenuation is
given in Section 4 and our conclusions are discussed
in Section 5.

2. PRELIMINARIES

We consider parameterized LMIs (PLMIs), that is,
ILMIs depending on a parameter 6 evolving in a
compact set. The parameter € can designate
parameter uncertainties or system operating
conditions but virtually appears. Here, a special
emphasis is put on PLMIs of the form able to
designate parameter uncertainties or system operating
conditions but virtually appears. In this case, a
particular emphasis is placed on PLMIs of the form

L
Mo+ OM()+ D, 68;M;(2)<0, (1)

i=1 1<i<j<L

where z is the decision variable, M;(z), M;(2)

are affine symmetric matrix-valued functions of z
and @ is a parameter confined to either the polytope

Oel: ={60=(6,6,,.6, ):

L )
> 6,=1, 620,i=12,L
i=l

or the parameter hyper-rectangle

0cT: =[p,q); peRE, ge RE,
p=20, g>0,p,20, ¢;>0, i=12,--- L,

3

where p;, and g¢; are elements of vector p,gq

each other.

However, PLMI feasibility problems involve an
infinite amount of LMIs according to the variations
of parameters, hence are very difficult to solve
numerically. Computational efforts for locating
feasible points are expected to be much greater than
those of LMIs. In this paper, we use relaxation
techniques where PLMIs are replaced by a finite
number of LMIs. Such approaches are potentially
conservative but often provide practically exploitable
solutions of difficult problems with a reasonable
computational effort.

Lemma 1: [12] The PLMI problem (1) and (2) has
a solution z whenever the following quadratic

conditions hold,

L
xTMO(z)x + ZH,-xTM,- (2)x
i=l
+ Z max{—xTMij(z)x
Ii<j<L

67 +67 6+,
: - +0.125 |, (4)
2 2

0? + 62

xTM,-j(z)x d 5 j<0,

V”x” =1, ae vertT.

The latter conditions are readily rewritten as LMIs
and can be easily expressed as an LMI feasibility
problem.

Remark 1: It should be noted that

2, g2
67 +6; -49,~+¢9j
2 2

max —xTM,-j ()x [
%)

6% +6°
+0.125), x' M ;(2)x > f}

is a tight upper bound of t9l~9ijM,~j(z)x with
e, +9j <1. Therefore, if the set " is alternatively

defined as

Ir:={6=(6.6,,-.6, ):

with a> 1, one can use the change of variable
6.=6,/a
Analogously, applying the change of variable

6_’1. =(6,— p)/(g— p) to the constraint (3) yields the
relation

to recover the case ¢ +6;<1

aelo, 11" %)
3. ROBUST AND NON-FRAGILE H”
CONTROLLER DESIGN

Consider a linear time variance uncertain system

x(t)y=Alt, a)x(t)+A;(t, )x(t —d)
+ B, (t, a)w(t) + B, (¢, ayu(t) ®
2(t) = C(t, a)x(t)
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where x(r)eR” is the state, u(r)eR” is the
control input, w(f)eR" is the square integral
disturbance input, z(¢)eR? is the controlled output,
A(t, @), 4;(t, @), B|(t, @), By (t, ),

and C(t,x)(z = 0) contain affine uncertainties of the
form

and matrices

L
A, 2) 4y + D e, (104;,

i=1

L
Ay (@) dgo + D (DA,

i=1

L
By(1,@)Byy + ) ;(1)By;, (9)

i=1

L
By(t,a)By + . a;(1)By;,

i=1

L
C(t,a)Cy + Y a;(1)C;.

i=1
and it is assumed that

(Al) the state-space data A(f, ), 4,(t, ), are
bounded continuous functions of «
(A2) the time-varying parameter a(f):

@ <a;(t)<q;, 1<i<L, V=0, (10)

The assumption (Al) and (A2) are general and
they secure existence and uniqueness of the solutions.
Although one finds the robust H state feedback
controller  u(f)=Kx(t), the actual controller

implemented is assumed as
M
uO)=K(t, B)x(t), K(t, )= B;(0K;,
j=1

; an
Zﬂj(f)=1, B;(1)=0
=

where K(¢, ) is the region of controller variations
and K is the vertices of polytope. Here, we choose

the center of polytope
1 M
Ko=—)Y K, (12)
MT

as nominal controller gain. And the region of
controller variations is rewritten as

M
K@t B)=Ko+ D B;(DK;,

J=1

M
D Bi(=1, K;=K;-K,.
Jj=l

(13)

Here, the values of K j indicate the measure of

non-fragility against controller gain variations. Now,
the closed loop system from (8) and (11) is given by

x(1)=[ A¢t, @)+ By (t, ) K (1, B)] x(2)

+ A, (t, a)x(t —d) + By (t, a)w(t),
2(t) = C(t, a)x(2),
x()=0, t<0.

(14)

Our controller design objective is described as
follows:

} The closed loop system (14) is
asymptotically stable.
) The closed loop system guarantees, under

l(0)], <7|w(®)], for all
w(t) € L,[0, ), affine
uncertainty of systems satisfying (9) and

polytopic uncertainty of controller satisfying (11)
or (13) and time delay d.

zero initial conditions,

non-zero parameter

Therefore, the objective of this paper is to design a
robust and non-fragile A state feedback controller
K, in the presence of time delay and affine
parameter uncertainty of system, and polytopic
uncertainty of controller. Also the controller
guarantees disturbance attenuation of the closed loop
system from w(t) to z(t).

Lemma 2: Consider a closed loop system (14) and
suppose that the disturbance input is always zero. If

there exists positive definite matrix P and
controller gain K satisfying

{ x(f) }T A PA, (t, @)
x(t-d)| | 4dt, )’ P -I
[ x(2) } <0,
x(t—-d)

then the closed loop system is asymptotically stable.
Here, Z is defined by

(15)

Z=A(t, ) P+PA(t, )
+1+PBy(t, )K(t, B) (16)
+K(t, B) By(t,a)" P.
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Proof: The Lyapunov derivative corresponding to
the closed loop system with Lyapunov functional

V(x(t), )=x(t)T Px(t) + f_d x(t) x(t) dr is

represented as

d
V), N=x(t)" { At ) P
+ PA(t, @) + I + PB,(t, O)K(t, B)
+K(t, B) By(t, @) P} x(0) an
+x(t—d) A4,(t, )" Px(t)
+x(0)] PA,(t, @)x(t — d)
—x(t—d) x(t - d).

Therefore, when gt—V(x(t), 1)<0, the closed loop

system is asymptotically stable. O

Lemma 3: If there exists positive definite matrix
P and the vertices of the controller variation

polytope K ;(j=0,1,2,---,M ) such that

U PA,(t,a) PB(t,a)
Ay (t, )" P -1 0 <0, (18)
B(t,a)' P 0 —y,1

then the closed loop system is asymptotically stable
with disturbance attenuation y» and non-fragility.

Here,

U=A(t,a) P+PA(t, o)+ 1
+C(t, ) C(t,a)+ PBy(t,)K(t, B)  (19)
+K(t, B) By (t,a)" P.

Proof: It is noticed that (19) implies (15).
Therefore, (19) ensures asymptotic stability of the
closed loop system. Under zero initial condition, let
us introduce

J= J‘: [z(t)Tz(t) — 72w w(t) ] dt. (20)

Then performance measure (20) for any nonzero

w(t) € L,[0, 00)
J< j:’ (z(t)T 2(8) - 72 we) w(o)
+ Ly, t)il dt 1)
dt

=[co"vewar

where {(¢t) and ¥ are defined as

co=[ <) xe-a) wo' ],
U PA;(t, ) PB(t,)
v=| 4, a) P . 0 . (22)
B/(t,a) P 0 -

This ¥ <0 implies ||z(t)”2£}/”w(t)||2 for any

w(t) € L,[0,0). Therefore, when ¥ <0, the

closed loop system is asymptotically stable with
disturbance attenuation y and non-fragility. ]

Theorem 1: Consider a linear time varying system
with affine parameter uncertainties (8). If there exists
matrix  Y;(j=0,1,2,---,M), positive  definite

matrix , and positive constant p satisfying

4 A;(t, @) B(t,a)
A, )t I 0
By(z, a)T 0 -pl
C(t, )0 0 0
. @ 0 0 ] 23)
octa) 0
0 0
0 01|<0,
-1 0
0 -1

then the closed loop system is asymptotic stable with
disturbance attenuation y and non-fragility. Some

variables are defined as follows:

W = A(t, )Q + QA(t, )"
+By(t, )Yy + Y] By (1, )"

M 24
+Z,3j(t)[Bz(t,a')Yj +YjTB2(t,a)T], @4
j=

p=v, Y=Ky0, Y=KQ

Proof: Using change of variable Q= Pl (18)is
equivalent to

U A;(t, ) B, @)

Ayt a) I 0 |[<0 (25)
B(t, )" 0 21
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where U is described as

U = At, 0)Q + QA(t, )T
+00+0C(t, ) C(t, )0 (26)
+B,(t,e)K (1, O + 0K (1, B) By(t, )"

Also (25) can be transformed to (23) using Schur
complements and (24). [

Theorem 2: With the assumptions (Al) and (A2),
the linecar parameter uncertain system (8) is
asymptotically stable with disturbance attenuation y

and non-fragility whenever there exists matrix
Yj( j=0,1,2,---,M ), positive definite matrix ¢,

and positive constant p such that

L
X My(2)x+ D a;(t)x" Mi(z)x

i=l

M
+3 B(0x" N ;(2)x

Jj=l

L M a(ty’ + (1)
+ max —xTMi~(z)x[l————j—
Z}; { ’ 2 @)

_ai(t)+ﬂj(t)+0 125]
2 Ty

2 2

2
Vx| =1, a(@), B(t) e vert T

holds for z, M;(z), N;(z), and M (z) defined

below:

-A0Q+ Q47 + Byg¥y + Yy By
T
Ao
My(z) = 3172)
GoQ
L 0
Az By 0C) 0
-1 0 0 0
0 —pf 0
0 0 -1 0
o o0 0 -I]

-AiQ + QAiT +By 1y + YOTBZTI'
Ay
M;(z)= Bg
GO
i 0
-
Adi Bli QCiT 0
0 0 0 0
0 0 0 0}
0 0 0 0
0 0 0 0]
[ Byo¥; +Y Bl 0 0 0 0]
0 0000
N;(z)= 0 000 08
0 0000
i 0 000 0]
By, +Y[BY, 0 0 0 0]
0 0000
M;(z)= 0 0 00 Of
0 0000
i 0 0 0 0 0]
Proof: Using the modified PLMI form
L M
My(2)+ D a;(OM;(z)+ )" ;)N ;(z)
i=l J=1 (29)

L M
+Zza[(t)ﬂj(t)M,j(Z) <0

i=1 j=I
and applying lemma 1, proof is easily obtained. [

Remark 2: (27) is converted to a finite number of
LMI problems in terms of
Yj(j=0, L,2,---,M), Q, p. Therefore, the robust
and non-fragile H' state feedback controller K, and
the region of controllers that satisfy non-fragility can
Ko=Y,0"' and
K i=Y J-Q_1 after determining the LMI solutions
from (27). In addition, the value of disturbance
attenuation y, can be obtained by y = \/; in (24).

be calculated from the

4. NUMERICAL EXAMPLE

Consider a linear time-varying system (8) with
affine parameter uncertainty satisfying
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A(D) =[2 z}—al(t){o 0}
1 -3 10
+a2(t){0 ‘1},
0 0
Ad(t){l 0.3}“1“)[—1 oJ
0 -1 100
+(X~)(I){:1 1},
=000
B,(r):{“l}ra,(z){ 0 }+a’2(t){l],
2 -0.5 0
B,(z):[l 2}040){0 0}
‘ 1 ~1 -1 0 (30)

05 0
+a2(t)[0 ~2},

city =[t 1]+amt 0]
and parameter o (1), & () is

oy (1) =1.25+0.25sin 271,

, (3bH
a,(t)=1.5+0.5cos2mt
therefore o (1), oy (1) satisfying
amell 15], ammell 2] (32)

In Theorem 2, all solutions are obtained
stmultaneously as follows:

{*212.7792 ~399.1352}
0= »

~135.6586  6.9712

y {-132.2097 ——198.3016}
809713  4.4951

YZ:{~59.5698 —194.7484} 3)
-55.7981  1.4157

Y1:F91.7795 393.050()]'

7 1136.7695 -5.9108
154163 —38.6545

Qz[—38.6545 97.4774]’

p=0.0158.

Therefore, the robust and non-fragile H° state
feedback gain, vertex of perturbation satisfying non-
fragility, and the value of disturbance attenuation in a
closed loop system are represented from the changes
of variables (24) as follows:

, [~42218 ~1.6782
KO =IO~ X 5
-1.5121 -0.5995
- 3 | =2.3990 -0.9533
K! 210 X B
~0.9010 -0.3572

(34)
—0.6285 -0.2492

o, [-1.5565 -—0.6192}
K2 =10"x s
. 5 13.9554 1.5726
K’% = ]OV X »

; 1.5295 0.6064

y=0.1257.

For computer simulation, d =35 and the value of
w(r) is defined by

5, <t<
W({):{ 3sec <1< S5sec 35)

0, otherwise

When nominal controller K, is applied, the

trajectortes of states, controlled output, and control
input are provided in Fig. 1. And when the vertices of

controller polytope K, ate applied, the responses
are given in Fig. 2. This example shows that the

85 - - - - e e g

-0} \ JX N

~02 V

0.3 . . . . - . . .
& 2 4 6 8 R 12 4 16 18 0
time

(a) The trajectories of states and controlled output.
1 - - . - s - -

input
i

U,

L3 . . . . - i R P,
b} 2 4 I3 ® 16 12 14 6 18 P4
time

{(b) The trajectories of controlled input.

Fig. 1. The case of nominal controller K.
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-6.2 ; 3 S :
° 2 4 6 8 W R M 6 W 20

time

(a) The trajectories of states and controlled output.

oz 4 & 8 W 1 W e I
time

(b) The trajectories of controlled input.

Fig. 2. The case of vertex K, .

vertices of controller polytope guarantee the
asymptotic stability and disturbance attenuation ¥
of a closed loop system. Therefore, we conclude that
the obtained robust and non-fragile H™ controller
guarantees the asymptotic stability and disturbance
attenuation ]]z(t)]]2 SO.1257]|W(1)||2 for  any

w(t)=1,[0, ), in spite of the controller gain
variations with the resulted polytopic region.

5. CONCLUSIONS

In this paper, we presented the robust and non-
fragile H™ controller design method for linear varying
systems with time delay as well as the affine
parameter uncertainties and state feedback controller
with polytopic uncertainty. Moreover, the robust and
non-fragile controller, the level of disturbance
attenuation, and the region of controllers that satisfy
non-fragility were calculated using the PLMI
approach. In spite of the controlfer gain variations
within the resulted polytopic region, the obtained
robust and non-fragile H controller guaranteed the
asymptotic stability and disturbance attenuation ¥

of the closed loop system. The area of future research

is extension of output feedback case.
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