Large-scale fires and their consequential damages are becoming increasingly common, but confidence in fire detection systems is waning. Recently, widely-used chemical fire detectors frequently generate lots of false alarms, while video-based deep learning fire detection is hampered by its time-consuming and expensive nature. To tackle these issues, this study proposes a fire detection model utilizing an autoencoder approach. The objective is to minimize false alarms while achieving swift and precise fire detection. The proposed model, employing an autoencoder methodology, can exclusively learn from normal data without the need for fire-related data, thus enhancing its adaptability to diverse environments. By amalgamating data from five distinct sensors, it facilitates rapid and accurate fire detection. Through experiments with various hyperparameter combinations, the proposed model demonstrated that out of 14 scenarios, only one encountered false alarm issues. Experimental results underscore its potential to curtail fire-related losses and bolster the reliability of fire detection systems.
Signature-based Intrusion Detection has many false positive and many difficulties to detect new and changed attacks. Alpha-cut is introduced which reduces false positive with a combination of signature-based IDS and machine learning-based IDS in prior paper [1]. This research is a study of a succession of Alpha-cut, and we introduce Beta-rick in which attacks can be detected but cannot be detected in single signature-based detection. Alpha-cut is a way of increasing detection accuracy for the signature based IDS, Beta-pick is a way which decreases the case of treating attack as normality. For Alpha-cut and Beta-pick we use XIBL as a learning algorithm and also show the difference of result of Sd.5. To describe the value of proposed method we apply Alpha-cut and Beta-pick to signature-based IDS and show the decrease of false alarms.
Since wireless sensor networks are deployed in open environments, an attacker can physically capture some sensor nodes. Using information of compromised nodes, an attacker can launch false data injection attacks that report nonexistent events. False data can cause false alarms and draining the limited energy resources of the forwarding nodes. In order to detect and discard such false data during the forwarding process, various security solutions have been proposed. But since they are prevention-based solutions that involve additional operations, they would be energy-inefficient if the corresponding attacks are not launched. In this paper, we propose a detection method that can detect false data injection attacks without extra overheads. The proposed method is designed based on the signature of false data injection attacks that has been derived through simulation. The proposed method detects the attacks based on the number of reporting nodes, the correctness of the reports, and the variation in the number of the nodes for each event. We show the proposed method can detect a large portion of attacks through simulation.
Journal of the Korea Society of Computer and Information
/
v.14
no.5
/
pp.65-75
/
2009
The development of IT technology, Internet popularity is increasing geometrically. However, as its side effect, the intrusion behaviors such as information leakage for key system and infringement of computation network etc are also increasing fast. The attack traffic detection method which is suggested in this study utilizes the Snort, traditional NIDS, filters the packet with false positive among the detected attack traffics using Nmap information. Then, it performs the secondary filtering using nessus vulnerability information and finally performs correlation analysis considering appropriateness of management system, severity of signature and security hole so that it could reduce false positive alarm message as well as minimize the errors from false positive and as a result, it raised the overall attack detection results.
Background: Radiation portal monitors (RPMs) involving plastic scintillators installed at the border inspection sites can detect illicit trafficking of radioactive sources in cargo containers within seconds. However, RPMs may generate false alarms because of the naturally occurring radioactive materials. To manage these false alarms, we previously suggested an energy-weighted algorithm that emphasizes the Compton-edge area as an outstanding peak. This study intends to evaluate the identification of radioactive sources using an improved energy-weighted algorithm. Materials and Methods: The algorithm was modified by increasing the energy weighting factor, and different peak combinations of the energy-weighted spectra were tested for source identification. A commercialized RPM system was used to measure the energy-weighted spectra. The RPM comprised two large plastic scintillators with dimensions of 174 × 29 × 7 ㎤ facing each other at a distance of 4.6 m. In addition, the in-house-fabricated signal processing boards were connected to collect the signal converted into a spectrum. Further, the spectra from eight radioactive sources, including special nuclear materials (SNMs), which were set in motion using a linear motion system (LMS) and a cargo truck, were estimated to identify the source identification rate. Results and Discussion: Each energy-weighted spectrum exhibited a specific peak location, although high statistical fluctuation errors could be observed in the spectrum with the increasing source speed. In particular, 137Cs and 60Co in motion were identified completely (100%) at speeds of 5 and 10 km/hr. Further, SNMs, which trigger the RPM alarm, were identified approximately 80% of the time at both the aforementioned speeds. Conclusion: Using the modified energy-weighted algorithm, several characteristics of the energy weighted spectra could be observed when the used sources were in motion and when the geometric efficiency was low. In particular, the discrimination between 60Co and 40K, which triggers false alarms at the primary inspection sites, can be improved using the proposed algorithm.
Jae-Eun Lee;Jong-Nam Kim;Hong-Seok Choi;Young-Bong Kim
Journal of the Institute of Convergence Signal Processing
/
v.23
no.3
/
pp.115-122
/
2022
With the outbreak of COVID-19 a few years ago, video conferencing and electronic document work have increased, and for this reason, the proportion of computer work among modern people's daily routines is increasing. However, as more and more people work on computers in the wrong posture for a long time, the number of patients with poor eyesight and text neck is increasing. Until recently, many studies have been published to correct posture, but most of them have limitations that users may experience discomfort because they have to correct posture by wearing equipment. A posture correction sensor algorithm is proposed to prevent access to the minimum distance between a computer monitor and a person using an ultrasonic sensor device. At this time, an algorithm for minimizing false alarms among warning alarms that sound at the minimum distance is also proposed. Because the ultrasonic sensor device is used, posture correction can be performed without attaching a device to the body, and the user can relieve discomfort. In addition, experimental results showed that accuracy can be improved by reducing false alarms by removing more than half of the noise generated during distance measurement.
Fire detection system is used for detection and alarm-generation of danger in case of fire. Most fire detection systems being used these days often malfunction from false positive and false negative errors. To improve detection reliability, an integrated fire detection algorithm using multi-senor information of heat, smoke and carbon monoxide detectors is suggested, then built and tested using the LabVIEW environment. Simulated using sensor measurement data offered by National Institute of Standards and Technology (NIST), possibility of reducing false positive and false negative errors is verified.
In this paper, we predict tracking performance of the multiple hypothesis tracking (MHT) algorithm. The MHT algorithm is known to be an optimal Bayesian approach and is superior to asly other tracking filters because it takes into account the events that the measurements can be originated from new targets and false alarms 3s well as interesting targets. In the MHT algorithm, a number of candidate hypotheses are generated and evaluated later as more data are received. The probability of each candidate hypotheses is approximately evaluated by using the hybrid conditional average approach (HYCA). We performed numerical experiments to show the validity of our performance prediction.
A basic assumption in standard applications of control charts is that the observations are statistically independent. However, this assumption is often violated from processes in many industries. The presence of autocorrelation has a serious impact on the performance of control charts, causing a dramatic increase in the frequency of false alarms. This paper considers a process in which the observations can be modeled as a first order autoregressive(AR(1)) process, and develops (equation omitted) charts with the variable sample size(VSS) scheme for monitoring the mean of this process.
We have developed a keyword spotting system for automatic speech editing. This system recognizes the only keyword 'MBC news' and then sends the time information to the host system. We adopted a vocabulary dependent model based on continuous hidden Markov model, and the Viterbi search was used for recognizing the keyword. In recognizing the keyword, the system uses a parallel network where HMM models are connected independently and back-tracking information for reducing false alarms and missing. We especially focused on implementing a stable and practical real-time system.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.