Abstract
Signature-based Intrusion Detection has many false positive and many difficulties to detect new and changed attacks. Alpha-cut is introduced which reduces false positive with a combination of signature-based IDS and machine learning-based IDS in prior paper [1]. This research is a study of a succession of Alpha-cut, and we introduce Beta-rick in which attacks can be detected but cannot be detected in single signature-based detection. Alpha-cut is a way of increasing detection accuracy for the signature based IDS, Beta-pick is a way which decreases the case of treating attack as normality. For Alpha-cut and Beta-pick we use XIBL as a learning algorithm and also show the difference of result of Sd.5. To describe the value of proposed method we apply Alpha-cut and Beta-pick to signature-based IDS and show the decrease of false alarms.
시그너쳐 기반 침입탐지 기술은 과탐지(false positive)가 많고 새로운 공격이나 변형된 유형의 공격을 감지하기 어렵다 우리는 앞선 논문[1]을 통해 시그너쳐 기반 침입 탐지 시스템과 기계학습 기반 침입 탐지 시스템을 Alpha-cut 방법을 이용하여 결합한 모델을 제시 하였다. 본 논문은 Alpha-cut의 후속연구로 기존 모델에서 감지하지 못하는 미탐지(false negative)를 줄이기 위한 Beta-pick 방법을 제안한다. Alpha-cut은 시그너쳐 기반 침입탐지 시스템의 공격 탐지결과에 대한 정확성을 높이는 방법인 반면에, Beta-rick은 공격을 정상으로 판단하는 경우를 줄이는 방법이다. Alpha-cut과 Beta-pick을 위해 사용된 기계학습 알고리즘은 XIBL(Extended Instance based Learner)이며, C4.5를 적용했을 때와 차이점을 결과로서 제시한다. 제안한 방법의 효과를 설명하기 위해 시그너쳐 기반 침입탐지 시스템의 탐지결과에 Alpha-cut과 Beta-pick을 적용하여 오경보(false alarm)가 감소함을 보였다.