• Title/Summary/Keyword: extensions

Search Result 843, Processing Time 0.027 seconds

A Survey of Public-Key Cryptography over Non-Abelian Groups

  • Lanel, G.H.J.;Jinasena, T.M.K.K.;Welihinda, B.A.K.
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.4
    • /
    • pp.289-300
    • /
    • 2021
  • Non-abelian group based Cryptography is a field which has become a latest trend in research due to increasing vulnerabilities associated with the abelian group based cryptosystems which are in use at present and the interesting algebraic properties associated that can be thought to provide higher security. When developing cryptographic primitives based on non-abelian groups, the researchers have tried to extend the similar layouts associated with the traditional underlying mathematical problems and assumptions by almost mimicking their operations which is fascinating even to observe. This survey contributes in highlighting the different analogous extensions of traditional assumptions presented by various authors and a set of open problems. Further, suggestions to apply the Hamiltonian Cycle/Path Problem in a similar direction is presented.

Two Extensions of a Star Operation on D to the Polynomial Ring D[X]

  • Chang, Gyu Whan;Kim, Hwankoo
    • Kyungpook Mathematical Journal
    • /
    • v.61 no.1
    • /
    • pp.23-32
    • /
    • 2021
  • Let D be an integral domain with quotient field K, X an indeterminate over D, ∗ a star operation on D, and Cl∗ (D) be the ∗-class group of D. The ∗w-operation on D is a star operation defined by I∗w = {x ∈ K | xJ ⊆ I for a nonzero finitely generated ideal J of D with J∗ = D}. In this paper, we study two star operations {∗} and [∗] on D[X] defined by A{∗} = ∩P∈∗w-Max(D) ADP [X] and A[∗] = (∩P∈∗w-Max(D) AD[X]P[X]) ∩ AK[X]. Among other things, we show that Cl∗(D) ≅ Cl[∗](D[X]) if and only if D is integrally closed.

ON THE WEAK LIMIT THEOREMS FOR GEOMETRIC SUMMATIONS OF INDEPENDENT RANDOM VARIABLES TOGETHER WITH CONVERGENCE RATES TO ASYMMETRIC LAPLACE DISTRIBUTIONS

  • Hung, Tran Loc
    • Bulletin of the Korean Mathematical Society
    • /
    • v.58 no.6
    • /
    • pp.1419-1443
    • /
    • 2021
  • The asymmetric Laplace distribution arises as a limiting distribution of geometric summations of independent and identically distributed random variables with finite second moments. The main purpose of this paper is to study the weak limit theorems for geometric summations of independent (not necessarily identically distributed) random variables together with convergence rates to asymmetric Laplace distributions. Using Trotter-operator method, the orders of approximations of the distributions of geometric summations by the asymmetric Laplace distributions are established in term of the "large-𝒪" and "small-o" approximation estimates. The obtained results are extensions of some known ones.

Treatment of Recurrent Respiratory Papillomatosis Using Laser and Available Adjuvant Therapies

  • Woo, Seung Hoon;Chung, Phil-Sang;Lee, Sang Joon
    • Medical Lasers
    • /
    • v.9 no.2
    • /
    • pp.126-133
    • /
    • 2020
  • Recurrent respiratory papillomatosis (RRP) is a benign tumor that occurs in the respiratory tract, especially in the larynx. The etiology of RRP is human papillomavirus (HPV). According to the age of occurrence, RRP is divided into childhood-onset and adult-onset types. Generally, childhood-onset RRP shows a high recurrence rate and diffuse involvement in the respiratory tract. Adult-onset RRP is more localized and appears more frequently as a solitary lesion. It may be the result of sexual transmission or the proliferation of latent HPV infections. At present, the treatment of choice for RRP is CO2 laser ablation. In addition, pulse dye laser or KTP (KTiOPO: potassium-titanyl-phosphate) lasers are also used. Non-surgical adjuvant therapies can be applied in cases requiring repetitive surgery or with diffuse extensions. This review will introduce the clinical features of RRP and various treatment options including lasers.

A STUDY OF LINKED STAR OPERATIONS

  • Paudel, Lokendra;Tchamna, Simplice
    • Bulletin of the Korean Mathematical Society
    • /
    • v.58 no.4
    • /
    • pp.837-851
    • /
    • 2021
  • Let R ⊆ L ⊆ S be ring extensions. Two star operations ${\ast}_1{\in}Star(R,S)$, ${\ast}_2{\in}Star(L,S)$ are said to be linked if whenever $A^{{\ast}_1}= R^{{\ast}_1}$ for some finitely generated S-regular R-submodule A of S, then $(AL)^{{\ast}_2}=L^{{\ast}_2}$. We study properties of linked star operations; especially when ${\ast}_1$ and ${\ast}_2$ are strict star operations. We introduce the notion of Prüfer star multiplication extension ($P{\ast}ME$) and we show that under appropriate conditions, if the extension R ⊆ S is $P{\ast}_1ME$ and ${\ast}_1$ is linked to ${\ast}_2$, then L ⊆ S is $P{\ast}_2ME$.

A GENERALIZATION OF ω-LINKED EXTENSIONS

  • Wu, Xiaoying
    • Bulletin of the Korean Mathematical Society
    • /
    • v.59 no.3
    • /
    • pp.725-743
    • /
    • 2022
  • In this paper, the concepts of ω-linked homomorphisms, the ω𝜙-operation, and DW𝜙 rings are introduced. Also the relationships between ω𝜙-ideals and ω-ideals over a ω-linked homomorphism 𝜙 : R → T are discussed. More precisely, it is shown that every ω𝜙-ideal of T is a ω-ideal of T. Besides, it is shown that if T is not a DW𝜙 ring, then T must have an infinite number of maximal ω𝜙-ideals. Finally we give an application of Cohen's Theorem over ω-factor rings, namely it is shown that an integral domain R is an SM-domain with ω-dim(R) ≤ 1, if and only if for any nonzero ω-ideal I of R, (R/I)ω is an Artinian ring, if and only if for any nonzero element α ∈ R, (R/(a))ω is an Artinian ring, if and only if for any nonzero element α ∈ R, R satisfies the descending chain condition on ω-ideals of R containing a.

MORE PROPERTIES OF WEIGHTED BEREZIN TRANSFORM IN THE UNIT BALL OF ℂn

  • Lee, Jaesung
    • Korean Journal of Mathematics
    • /
    • v.30 no.3
    • /
    • pp.459-465
    • /
    • 2022
  • We exhibit various properties of the weighted Berezin operator Tα and its iteration Tkα on Lp(𝜏), where α > -1 and 𝜏 is the invariant measure on the complex unit ball Bn. Iterations of Tα on L1R(𝜏) the space of radial integrable functions have performed important roles in proving 𝓜-harmonicity of bounded functions with invariant mean value property. We show differences between the case of 1 < p < ∞ and p = 1, ∞ under the infinite iteration of Tα or the infinite summation of iterations, most of which are extensions or related assertions to the propositions of the previous results.

SOME RESULTS ON CENTRALIZERS OF SEMIPRIME RINGS

  • ANSARI, ABU ZAID
    • Journal of Applied and Pure Mathematics
    • /
    • v.4 no.3_4
    • /
    • pp.99-105
    • /
    • 2022
  • The objective of this research paper is to prove that an additive mapping T from a semiprime ring R to itself will be centralizer having a suitable torsion restriction on R if it satisfy any one of the following algebraic equations (a) 2T(xnynxn) = T(xn)ynxn + xnynT(xn) (b) 3T(xnynxn) = T(xn)ynxn+xnT(yn)xn+xnynT(xn) for every x, y ∈ R. Further, few extensions of these results are also presented in the framework of *-ring.

FINITE INTEGRALS ASSOCIATED WITH THE PRODUCT OF ORTHOGONAL POLYNOMIALS AND WRIGHT FUNCTION

  • Khan, Nabiullah;Khan, Mohammad Iqbal;Khan, Owais
    • Honam Mathematical Journal
    • /
    • v.43 no.4
    • /
    • pp.597-612
    • /
    • 2021
  • Several useful and interesting extensions of the various special functions have been introduced by many authors during the last few decades. Various integral formulas associated with Wright function have been studied and a noteworthy amount of work have found in literature. The principal object of the present paper is to evaluate finite integral formulas containing the product of orthogonal polynomials with generalized Wright function. These integral formulas are expressed in terms of Srivastava and Daoust function. Some interesting particular cases are obtained from the main results by specialising the suitable values of the parameters involved.

REMARKS ON THE KKM STRUCTURES OF KHANH AND QUAN

  • Sehie Park
    • Nonlinear Functional Analysis and Applications
    • /
    • v.28 no.1
    • /
    • pp.123-134
    • /
    • 2023
  • Since Knaster, Kuratowski, and Mazurkiewicz established their KKM theorem in 1929, it was first applied to topological vector spaces mainly by Fan and Granas. Later it was extended to convex spaces by Lassonde and to extensions of c-spaces by Horvath. In 1992, such study was called the KKM theory by ourselves. Then the theory was extended to generalized convex spaces or G-convex spaces. Motivated by such spaces, there have appeared several particular types of artificial spaces. In 2006 we introduced abstract convex spaces which contain all existing spaces appeared in the KKM theory. Later in 2014-2020, Khahn and Quan introduced "topologically based existence theorems" and the so-called KKM structure. In the present paper, we show that their structure is a particular type of already known KKM spaces.