Abstract
We exhibit various properties of the weighted Berezin operator Tα and its iteration Tkα on Lp(𝜏), where α > -1 and 𝜏 is the invariant measure on the complex unit ball Bn. Iterations of Tα on L1R(𝜏) the space of radial integrable functions have performed important roles in proving 𝓜-harmonicity of bounded functions with invariant mean value property. We show differences between the case of 1 < p < ∞ and p = 1, ∞ under the infinite iteration of Tα or the infinite summation of iterations, most of which are extensions or related assertions to the propositions of the previous results.