MORE PROPERTIES OF WEIGHTED BEREZIN TRANSFORM IN THE UNIT BALL OF \mathbb{C}^n

Jaesung Lee

ABSTRACT. We exhibit various properties of the weighted Berezin operator T_{α} and its iteration T_{α}^k on $L^p(\tau)$, where $\alpha > -1$ and τ is the invariant measure on the complex unit ball B_n . Iterations of T_{α} on $L_R^1(\tau)$ the space of radial integrable functions have performed important roles in proving \mathcal{M} -harmonicity of bounded functions with invariant mean value property. We show differences between the case of $1 and <math>p = 1, \infty$ under the infinite iteration of T_{α} or the infinite summation of iterations, most of which are extensions or related assertions to the propositions of the previous results.

1. Introduction and Preliminaries

Let B_n be the unit ball of \mathbb{C}^n and let ν be the Lebesgue measure normalized to $\nu(B_n) = 1$. For $\alpha > -1$, we define a positive measure ν_{α} by

$$d\nu_{\alpha}(z) = \frac{\Gamma(n+\alpha+1)}{n!\Gamma(\alpha+1)} (1-|z|^2)^{\alpha} d\nu(z)$$

so that $\nu_{\alpha}(B_n) = 1$. For such α and $f \in L^1(B_n, \nu_{\alpha})$, the weighted Berezin transform $T_{\alpha}f$ on B_n is defined by

$$(T_{\alpha}f)(z) = \int_{B_n} f(\varphi_z(w)) d\nu_{\alpha}(w) \text{ for } z \in B_n,$$

where $\varphi_a \in \operatorname{Aut}(B_n)$ is the canonical automorphism. Equivalently, we can write

(1)
$$(T_{\alpha}f)(z) = \int_{B_{n}} f(w) \frac{(1-|z|^{2})^{n+1+\alpha}}{|1-\langle z,w\rangle|^{2n+2+2\alpha}} d\nu_{\alpha}(w).$$

The invariant Laplacian $\tilde{\Delta}$ is defined for $f \in C^2(B_n)$ by

$$(\tilde{\Delta}f)(z) = \Delta(f \circ \varphi_z)(0).$$

The \mathcal{M} -harmonic functions in B_n are those for which $\tilde{\Delta}f = 0$.

Received February 20, 2022. Revised June 22, 2022. Accepted July 25, 2022.

²⁰¹⁰ Mathematics Subject Classification: 32A70, 47G10.

Key words and phrases: weighted Berezin transform, iteration, invariant measure, \mathcal{M} -harmonic function.

[©] The Kangwon-Kyungki Mathematical Society, 2022.

This is an Open Access article distributed under the terms of the Creative commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0/) which permits unrestricted non-commercial use, distribution and reproduction in any medium, provided the original work is properly cited.

If a function $f \in L^1(B_n, \nu_\alpha)$ is \mathcal{M} -harmonic, then $f \circ \psi$ is also \mathcal{M} -harmonic for every $\psi \in \operatorname{Aut}(B_n)$. Hence for a given $\alpha > -1$, bounded \mathcal{M} -harmonic function f satisfies an invariant mean value property

$$\int_{B_n} (f \circ \psi) \ d\nu_{\alpha} = f(\psi(0)) \text{ for every } \psi \in \text{Aut}(B_n),$$

which is equivalent to saying that

$$(T_{\alpha}f)(z) = f(z)$$
 for every $z \in B_n$.

Conversely, Furstenberg ([2],[3]) gave an abstract proof that a bounded function on the unit ball which satisfies an invariant mean value property is \mathcal{M} -harmonic. Later, Ahern et al.([1]) gave an analytic proof that $f \in L^{\infty}(B_n)$ satisfying $T_0 f = f$ is \mathcal{M} -harmonic, and $f \in L^1(B_n, \nu_{\alpha})$ satisfying $T_0 f = f$ has to be \mathcal{M} -harmonic if and only if $n \leq 11$. In the polydisc D^n , the author([4]) proved that $f \in L^p(D^n)$ which satisfies an invariant mean value property need not be n-harmonic when 1 .

In 2010, [5] gave an analytic proof that for every given $\alpha > -1$, $f \in L^{\infty}(B_n)$ satisfying $T_{\alpha}f = f$ is \mathcal{M} -harmonic. In [5], the author used the spectral theory and interation of T_{α} on the commutative Banach algebra $L_R^1(\tau)$, the space of all radial function f on B_n integrable with respect to the invariant measure τ defined by

$$d\tau(z) = (1 - |z|^2)^{-n-1} d\nu(z).$$

The invariant measure τ on B_n satisfies

$$\int_{B_n} f \ d\tau = \int_{B_n} (f \circ \psi) \ d\tau$$

for every $f \in L^1(\tau)$ and $\psi \in \operatorname{Aut}(B_n)$. Even though τ is not a finite measure on B_n so that a non-zero constant does not belong to $L^1(\tau)$, T_{α} on $L^{\infty}(B_n)$ is the adjoint of T_{α} on $L^1(\tau)$ in the sense that

(2)
$$\int_{B_n} (T_{\alpha}f) \cdot g \ d\tau = \int_{B_n} f \cdot (T_{\alpha}g) \ d\tau$$

for $f \in L^1(\tau)$ and $g \in L^{\infty}(B_n)$. Since $L^{\infty}(B_n)$ is a dual space of $L^1(\tau)$, the spectrum of T_{α} on $L^{\infty}(B_n)$ is the same as the spectrum of T_{α} on $L^1(B_n, \tau)$.

For $1 \leq p \leq \infty$, we denote $L_R^p(\tau)$ as the subspace of $L^p(B_n, \tau)$ which consists of radial functions, which means that $f \in L_R^p(\tau)$ if and only if $f \in L^p(\tau)$ and f(z) = f(|z|) for all $z \in B_n$. In [5], the key step to the proof of the main theorem is Lemma 2.1 which states that

(3)
$$\lim_{k \to \infty} ||T_{\alpha}^{k}(I - T_{\alpha})|| = 0 \quad \text{on} \quad L_{R}^{1}(\tau).$$

Motivated by Lemma 2.1 of [5] the author([6]) developed further theory of the iterations of T_{α} on $L^{1}(\tau)$ and $L^{p}(\tau)$ for 1 . There are three propositions of [6] stating that

If $f \in L_R^1(\tau)$, then

(4)
$$\lim_{k \to \infty} \int_{B_n} |T_{\alpha}^k f| d\tau = \left| \int_{B_n} f d\tau \right|.$$

If $1 and <math>f \in L^p(\tau)$, then

(5)
$$\lim_{k \to \infty} \int_{B_n} |T_{\alpha}^k f|^p d\tau = 0.$$

If $f \in L^1(\tau)$ and $z \in B_n$, then

(6)
$$\sum_{k=0}^{\infty} |T_{\alpha}^k f(z)| < \infty.$$

The main results of this paper are related with each of three propositions of [6]. Indeed, we extend the results of three propositions of [6] to show clear differences between the case of $1 and <math>p = 1, \infty$ under the infinite iteration of T_{α} or the infinite summation of iterations. In section 2, we propose three new propositions and a lemma about additional properties iterations of T_{α} on $L^{p}(\tau)$ for $1 \leq p < \infty$ and $p = 1, \infty$. Throughout the paper α is an arbitrarily given real number with $\alpha > -1$.

2. The iterations of T_{α}

This section contains main results of the paper most of which are extensions or related assertions to the propositions of the previous paper [6]. Indeed in Proposition 3.2 of [6], the author showed that $T_{\alpha}^k f$ converges pointwise to zero in B_n even though $T_{\alpha}^k f$ generally does not converges to zero in norm when $f \in L^1(\tau)$. Next proposition shows much more is true for $f \in L^1(\tau)$.

PROPOSITION 2.1. For $f \in L^1(\tau)$, if $\{T_{\alpha}^k f\}$ has a subsequence that converges weakly, then

$$\lim_{k \to \infty} \int_{B_n} |T_{\alpha}^k f| \ d\tau \ = \ 0.$$

Proof. Let $\{T_{\alpha}^{m_k}f\}$ be a subsequence that converges weakly to some $g \in L^1(\tau)$, then for every $\ell \in L^{\infty}(B_n)$ we get

$$\int_{B_{n}} (g - T_{\alpha}g) \cdot \ell \, d\tau$$

$$= \left(\int_{B_{n}} g \cdot \ell \, d\tau - \int_{B_{n}} (T_{\alpha}^{m_{k}}f) \cdot \ell \, d\tau \right)$$

$$+ \left(\int_{B_{n}} (T_{\alpha}^{m_{k}}f) \cdot \ell \, d\tau - \int_{B_{n}} (T_{\alpha}^{m_{k}+1}f) \cdot \ell \, d\tau \right)$$

$$+ \left(\int_{B_{n}} (T_{\alpha}^{m_{k}+1}f) \cdot \ell \, d\tau - \int_{B_{n}} (T_{\alpha}g) \cdot \ell \, d\tau \right)$$

as $k \to \infty$ the first and the third terms of right side converge to zero since $T_{\alpha}^{m_k} \to g$ weakly and the second term converges to zero by Corollary 2.1 of [5]. Hence $T_{\alpha}g = g$ on B_n .

And for every $z \in B_n$ we have

$$|g(z)| = |T_{\alpha}g(z)| \le \int_{B_{n}} |g(w)| \frac{(1 - |w|^{2})^{n+1+\alpha}}{|1 - \langle z, w \rangle|^{2n+2+2\alpha}} d\tau(w)$$

$$\le c_{\alpha} \sup_{z \in B_{n}} \left(\frac{(1 - |z|^{2})(1 - |w|^{2})}{|1 - \langle z, w \rangle|^{2}} \right)^{n+1+\alpha} \int_{B_{n}} |g| d\tau$$

$$= c_{\alpha} \int_{B_{n}} |g| d\tau.$$

Thus g is a bounded function on B_n satisfying $T_{\alpha}g = g$, which means that g is \mathcal{M} -harmonic by Theorem 1.1 of [5]. From 4.2.3 of [7], the radialization of such g is a constant. But a non-zero constant can not belong to $L^q(\tau)$, which forces g to be the constant zero.

Thus by Masur's lemma stating that any weakly convergent sequence in a Banach space has a sequence of convex combinations of its members that converges strongly to the same limit, for every given $\epsilon > 0$ there exists an operator

$$S = \sum_{j=1}^{N} c_j T_{\alpha}^{m_{k_j}} (0 \le c_j \le 1, \sum c_j = 1)$$

on $L^1(\tau)$ such that $||Sf||_{L^1(\tau)} < \epsilon$. For $k \ge 0$,

$$||T_{\alpha}^{k}f||_{L^{1}(\tau)} \leq ||T_{\alpha}^{k}Sf||_{L^{1}(\tau)} + ||T_{\alpha}^{k}f - T_{\alpha}^{k}Sf||_{L^{1}(\tau)}$$

where

$$||T_{\alpha}^{k}Sf||_{L^{1}(\tau)} \le ||Sf||_{L^{1}(\tau)} < \epsilon$$

and by (1.3) we get

$$\lim_{k \to \infty} ||T_{\alpha}^k f - T_{\alpha}^k S f||_{L^1(\tau)} = 0.$$

Therefore,

$$\lim_{k \to \infty} \|T_{\alpha}^k f\|_{L^1(\tau)} = 0$$

and this completes the proof.

COROLLARY 2.2. There exists $f \in L^{\infty}(B_n)$ for which $\lim_{k\to\infty} T_{\alpha}^k f$ does not exist pointwise.

Proof. Assume that $\lim T_{\alpha}^{k}\ell$ exists for every $\ell \in L^{\infty}(B_{n})$ then for any $g \in L_{R}^{1}(\tau)$ with $\int_{B_{n}} g \ d\tau \neq 0$,

$$\lim_{k \to \infty} \int_{B_n} \left(T_{\alpha}^k g \right) \ell \ d\tau = \lim_{k \to \infty} \int_{B_n} g \left(T_{\alpha}^k \ell \right) d\tau$$

exists.

This means $\{T_{\alpha}^k g\}$ converges weakly. Since $L^1(\tau)$ is weak complete, by Proposition 2.1,

$$\lim_{k \to \infty} ||T_{\alpha}^k g||_{L^1(\tau)} = 0,$$

which contradicts the Proposition 3.2 of [6] asserting that

(7)
$$\lim_{k \to \infty} ||T_{\alpha}^k g||_{L^1(\tau)} = \left| \int_{B_n} g \ d\tau \right| \neq 0.$$

Now we recall Lemma 2.1 of [5] which states that

(8)
$$\lim_{k \to \infty} ||T_{\alpha}^{k}(I - T_{\alpha})f||_{L^{1}(\tau)} = 0 \quad \text{for all} \quad f \in L_{R}^{1}(\tau).$$

Thus by (2.1) and (2.2) the space $(I - T_{\alpha})L_R^1(\tau)$ is not dense in $L_R^1(\tau)$. Since $L_R^{\infty}(B_n)$ is the dual space of $L_R^1(\tau)$ where T_{α} is self-adjoint, by Lemma 2.1 of [5] we also have

(9)
$$\lim_{k \to \infty} ||T_{\alpha}^{k}(I - T_{\alpha})f||_{\infty} = 0 \quad \text{for all} \quad f \in L_{R}^{\infty}(B_{n}).$$

Meanwhile, if f = c a nonzero constant, then $T_{\alpha}^{k}c = c$ which does not tend to zero as $k \to \infty$. Hence, we can see that $(I - T_{\alpha})L_{R}^{\infty}(B_{n})$ is not dense in $L_{R}^{\infty}(B_{n})$ either.

However, next proposition shows that for $1 , <math>(I - T_{\alpha})L^{p}(\tau)$ is dense in $L^{p}(\tau)$. We will use the formula

$$d\nu_{\alpha}(z) = c_{\alpha}(1 - |z|^{2})^{\alpha}d\nu(z) = c_{\alpha}(1 - |z|^{2})^{n+1+\alpha}d\tau(z),$$

where

$$c_{\alpha} = \frac{\Gamma(n+\alpha+1)}{n!\Gamma(\alpha+1)}.$$

Proposition 2.3. If 1 , then

$$\overline{(I - T_{\alpha})L^{p}(\tau)} = L^{p}(\tau).$$

Proof. Let Φ be a bounded linear functional on $L^p(\tau)$, then there is a $g \in L^q(\tau)$ with $\frac{1}{p} + \frac{1}{q} = 1$ such that

$$\Phi(f) = \int_{B_n} fg \ d\tau,$$

for every $f \in L^p(\tau)$. Assume that $\Phi(h) = 0$ for all $h \in (I - T_\alpha)L^p(\tau)$. Then

$$\int_{B_n} (f - T_\alpha f) \ g \ d\tau = 0$$

for every $f \in L^p(\tau)$ which means, by sepf-adjointness of T_{α}

$$\int_{B_n} f \left(g - T_{\alpha} g \right) \, d\tau = 0$$

for every $f \in L^p(\tau)$, which implies $g = T_{\alpha}g$. However, for every $z \in B_n$

$$|g(z)| = |T_{\alpha}g(z)|$$

$$\leq \int_{B_{n}} |g(w)| \frac{(1-|z|^{2})^{n+1+\alpha}}{|1-\langle z,w\rangle|^{2n+2+2\alpha}} d\nu_{\alpha}(w)$$

$$= c_{\alpha}(1-|z|^{2})^{n+1+\alpha} \int_{B_{n}} |g(w)| \frac{(1-|w|^{2})^{n+1+\alpha}}{|1-\langle z,w\rangle|^{2n+2+2\alpha}} d\tau(w)$$

$$\leq c_{\alpha}(1-|z|^{2})^{n+1+\alpha} ||g||_{L^{q}(\tau)} \left(\int_{B_{n}} \frac{(1-|w|^{2})^{p(n+1+\alpha)}(1-|w|^{2})^{-n-1}}{|1-\langle z,w\rangle|^{p(2n+2+2\alpha)}} d\nu(w) \right)^{\frac{1}{p}}$$

$$\leq C_{\alpha,p}(1-|z|^{2})^{n+1+\alpha} ||g||_{L^{q}(\tau)}(1-|z|^{2})^{-n-1-\alpha}$$

$$\leq C_{\alpha,p} ||g||_{L^{q}(\tau)},$$

by 1.4.10 of [7] where $C_{\alpha,p}$ is a constant independent of z. Thus g is a bounded function on B_n satisfying $T_{\alpha}g = g$, which means that g is \mathcal{M} -harmonic by Theorem 1.1 of [5]. From 4.2.3 of [7], the radialization of such g is a constant. But a non-zero constant can not belong to $L^q(\tau)$, which forces g to be the constant zero. Therefore, we have $\Phi(f) = 0$ for all $f \in L^p(\tau)$.

From Hahn-Banach theorem, we conclude that $(I - T_{\alpha})L^{p}(\tau)$ is dense in $L^{p}(\tau)$.

For $1 , we have characterized the closure of <math>(I - T_{\alpha})L^{p}(\tau)$ in terms of the iterations of T_{α} on $L^{p}(\tau)$. Next proposition, we characterize the space $(I - T_{\alpha})L^{p}(\tau)$ in terms of the iterations of T_{α} on $L^{p}(\tau)$ when $1 by using the duality property of <math>L^{p}(\tau)$.

Proposition 2.4. For 1 ,

$$(I - T_{\alpha})L^{p}(\tau) = \left\{ f \in L^{p}(\tau) \mid \limsup_{m \to \infty} \left\| \sum_{k=0}^{m} T_{\alpha}^{k} f \right\|_{L^{p}(\tau)} < \infty \right\}.$$

Proof. If $g \in L^p(\tau)$ and $f = g - T_{\alpha}g$, then

$$\left\| \sum_{k=0}^{m} T_{\alpha}^{k} f \right\|_{L^{p}(\tau)} = \|g - T_{\alpha}^{m+1} g\|_{L^{p}(\tau)} \le 2\|g\|_{L^{p}(\tau)}.$$

Hence we have

$$(I - T_{\alpha})L^{p}(\tau) \subset \left\{ f \in L^{p}(\tau) \mid \limsup_{m \to \infty} \left\| \sum_{k=0}^{m} T_{\alpha}^{k} f \right\|_{L^{p}(\tau)} < \infty \right\}.$$

On the other hand, let $f \in L^p(\tau)$ satisfy

$$\limsup_{m \to \infty} \left\| \sum_{k=0}^m T_{\alpha}^k f \right\|_{L^p(\tau)} = M < \infty.$$

Let us denote that

$$f_k = \sum_{j=0}^k T_{\alpha}^j f.$$

Then $f_k - T_{\alpha} f_k = f - T_{\alpha}^{k+1} f$. Hence, if we define

$$F_m = \frac{1}{m+1} \sum_{k=0}^{m} f_k,$$

then we have $||F_m||_{L^p(\tau)} \leq M$ and

$$(I - T_{\alpha})F_{m} = \frac{1}{m+1} \sum_{k=0}^{m} (I - T_{\alpha})f_{k}$$
$$= \frac{1}{m+1} \sum_{k=0}^{m} (f - T_{\alpha}^{k+1}f)$$
$$= f - \frac{1}{m+1} \sum_{k=0}^{m} T_{\alpha}^{k+1}f.$$

Hence, as $m \to \infty$

$$||(I - T_{\alpha})F_m - f||_{L^p(\tau)} \le \frac{1}{m+1}M \to 0.$$

Since $\{F_m\}$ is norm bounded, it has a subspace $\{F_{m_j}\}$ that converges weak* to some $h \in L^p(\tau)$ and the operator $I - T_\alpha$ is self-adjoint, which makes $\{(I - T_\alpha)F_{m_j}\}$ converge to $(I - T_\alpha)h$ weak* in $L^p(\tau)$. Since $(I - T_\alpha)F_m$ converges to f in $L^p(\tau)$ norm, f is the unique weak* limit of $(I - T_\alpha)F_m$. Therefore,

$$f = (I - T_{\alpha})h \in (I - T_{\alpha})L^{p}(\tau).$$

This completes the proof.

References

- [1] P. Ahern, M. Flores and W. Rudin, An invariant volume-mean-value property, J. Funct. Anal. 111 (2) (1993), 380–397.
- [2] H. Furstenberg, A Poisson formula for semi-simple Lie groups, Ann. of Math. 77 (2) (1963), 335–386.
- [3] H. Furstenberg, *Boundaries of Riemannian symmetric spaces*, Symmetric spaces (Short Courses, Washington Univ., St. Louis, Mo., 1969–1970),
- [4] J. Lee., Weighted Berezin transform in the polydisc, J. Math. Anal. Appl. 338 (2) (2008), 1489–1493.
- J. Lee, A Characterization of M-harmonicity, Bull. Korean Math. Soc. 47 (2010), 113–119.
- J. Lee, Iterates of weighted Berezin transform under invariant measure in the unit ball, Korean
 J. Math. 28 (3) (2020), pp. 449–457.
- [7] W. Rudin, Function theory in the unit ball of \mathbb{C}^n , Springer-Verlag, New York Inc., 1980.

Jaesung Lee

Department of Mathematics, Sogang University, Seoul, Korea $\,$

E-mail: jalee@sogang.ac.kr