• Title/Summary/Keyword: existence of solutions

Search Result 946, Processing Time 0.022 seconds

Global Existence and Ulam-Hyers Stability of Ψ-Hilfer Fractional Differential Equations

  • Kucche, Kishor Deoman;Kharade, Jyoti Pramod
    • Kyungpook Mathematical Journal
    • /
    • v.60 no.3
    • /
    • pp.647-671
    • /
    • 2020
  • In this paper, we consider the Cauchy-type problem for a nonlinear differential equation involving a Ψ-Hilfer fractional derivative and prove the existence and uniqueness of solutions in the weighted space of functions. The Ulam-Hyers and Ulam-Hyers-Rassias stabilities of the Cauchy-type problem is investigated via the successive approximation method. Further, we investigate the dependence of solutions on the initial conditions and their uniqueness using 𝜖-approximated solutions. Finally, we present examples to illustrate our main results.

EXISTENCE AND LARGE TIME BEHAVIOR OF SOLUTIONS TO A FOURTH-ORDER DEGENERATE PARABOLIC EQUATION

  • LIANG, BO;WANG, MEISHAN;WANG, YING
    • Bulletin of the Korean Mathematical Society
    • /
    • v.52 no.4
    • /
    • pp.1059-1068
    • /
    • 2015
  • The paper is devoted to studying a fourth-order degenerate parabolic equation, which arises in fluid, phase transformation and biology. Based on the existence and uniqueness of one semi-discrete problem, two types of approximate solutions are introduced. By establishing some necessary uniform estimates for those approximate solutions, the existence and uniqueness of the corresponding parabolic problem are obtained. Moreover, the long time asymptotic behavior is established by the entropy functional method.

MULTIPLE SOLUTIONS RESULT FOR THE MIXED TYPE NONLINEAR ELLIPTIC PROBLEM

  • Jung, Tacksun;Choi, Q-Heung
    • Korean Journal of Mathematics
    • /
    • v.19 no.4
    • /
    • pp.423-436
    • /
    • 2011
  • We obtain a theorem that shows the existence of multiple solutions for the mixed type nonlinear elliptic equation with Dirichlet boundary condition. Here the nonlinear part contain the jumping nonlinearity and the subcritical growth nonlinearity. We first show the existence of a positive solution and next find the second nontrivial solution by applying the variational method and the mountain pass method in the critical point theory. By investigating that the functional I satisfies the mountain pass geometry we show the existence of at least two nontrivial solutions for the equation.

EXISTENCE OF MULTIPLE POSITIVE SOLUTIONS FOR A SCHRÖDINGER-TYPE SINGULAR FALLING ZERO PROBLEM

  • Eunkyung Ko
    • East Asian mathematical journal
    • /
    • v.39 no.3
    • /
    • pp.355-367
    • /
    • 2023
  • Extending [14], we establish the existence of multiple positive solutions for a Schrödinger-type singular elliptic equation: $$\{{-{\Delta}u+V(x)u={\lambda}{\frac{f(u)}{u^{\beta}}},\;x{\in}{\Omega}, \atop u=0,\;x{\in}{\partial}{\Omega},$$ where 0 ∈ Ω is a bounded domain in ℝN, N ≥ 1, with a smooth boundary ∂Ω, β ∈ [0, 1), f ∈ C[0, ∞), V : Ω → ℝ is a bounded function and λ is a positive parameter. In particular, when f(s) > 0 on [0, σ) and f(s) < 0 for s > σ, we establish the existence of at least three positive solutions for a certain range of λ by using the method of sub and supersolutions.

EXISTENCE OF SOLUTIONS TO A GENERALIZED SELF-DUAL CHERN-SIMONS EQUATION ON FINITE GRAPHS

  • Yuanyang Hu
    • Journal of the Korean Mathematical Society
    • /
    • v.61 no.1
    • /
    • pp.133-147
    • /
    • 2024
  • Let G = (V, E) be a connected finite graph. We study the existence of solutions for the following generalized Chern-Simons equation on G $${\Delta}u={\lambda}e^u(e^u-1)^5+4{\pi}\sum_{s=1}^{N}\delta_{ps}$$, where λ > 0, δps is the Dirac mass at the vertex ps, and p1, p2, . . . , pN are arbitrarily chosen distinct vertices on the graph. We show that there exists a critical value $\hat{\lambda}$ such that when λ > $\hat{\lambda}$, the generalized Chern-Simons equation has at least two solutions, when λ = $\hat{\lambda}$, the generalized Chern-Simons equation has a solution, and when λ < $\hat{\lambda}$, the generalized Chern-Simons equation has no solution.

POSITIVE PERIODIC SOLUTIONS OF IMPULSIVE FUNCTIONAL DIFFERENTIAL EQUATIONS

  • LIU YUJI;XIA JIANYE;GE WEIGAO
    • Journal of applied mathematics & informatics
    • /
    • v.19 no.1_2
    • /
    • pp.261-280
    • /
    • 2005
  • We study the existence and nonexistence of positive periodic solutions of a non-autonomous functional differential equation with impulses. The equations we study may be of delay, advance or mixed type functional differential equations and the impulses may cause the existence of positive periodic solutions. The methods employed are fixed-point index theorem, Leray-Schauder degree, and upper and lower solutions. The results obtained are new, and some examples are given to illustrate our main results.

EXISTENCE AND DECAY PROPERTIES OF WEAK SOLUTIONS TO THE INHOMOGENEOUS HALL-MAGNETOHYDRODYNAMIC EQUATIONS

  • HAN, PIGONG;LEI, KEKE;LIU, CHENGGANG;WANG, XUEWEN
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.26 no.2
    • /
    • pp.76-107
    • /
    • 2022
  • In this paper, we study the temporal decay of global weak solutions to the inhomogeneous Hall-magnetohydrodynamic (Hall-MHD) equations. First, an approximation problem and its weak solutions are obtained via the Caffarelli-Kohn-Nirenberg retarded mollification technique. Then, we prove that the approximate solutions satisfy uniform decay estimates. Finally, using the weak convergence method, we construct weak solutions with optimal decay rates to the inhomogeneous Hall-MHD equations.

THREE-POINT BOUNDARY VALUE PROBLEMS FOR HIGHER ORDER NONLINEAR FRACTIONAL DIFFERENTIAL EQUATIONS

  • Khan, Rahmat Ali
    • Journal of applied mathematics & informatics
    • /
    • v.31 no.1_2
    • /
    • pp.221-228
    • /
    • 2013
  • The method of upper and lower solutions and the generalized quasilinearization technique is developed for the existence and approximation of solutions to boundary value problems for higher order fractional differential equations of the type $^c\mathcal{D}^qu(t)+f(t,u(t))=0$, $t{\in}(0,1),q{\in}(n-1,n],n{\geq}2$ $u^{\prime}(0)=0,u^{\prime\prime}(0)=0,{\ldots},u^{n-1}(0)=0,u(1)={\xi}u({\eta})$, where ${\xi},{\eta}{\in}(0,1)$, the nonlinear function f is assumed to be continuous and $^c\mathcal{D}^q$ is the fractional derivative in the sense of Caputo. Existence of solution is established via the upper and lower solutions method and approximation of solutions uses the generalized quasilinearization technique.

Approximating Coupled Solutions of Coupled PBVPs of Non-linear First Order Ordinary Differential Equations

  • Dhage, Bapurao Chandrabhan
    • Kyungpook Mathematical Journal
    • /
    • v.56 no.1
    • /
    • pp.221-233
    • /
    • 2016
  • The present paper proposes a new monotone iteration method for existence as well as approximation of the coupled solutions for a coupled periodic boundary value problem of first order ordinary nonlinear differential equations. A new hybrid coupled fixed point theorem involving the Dhage iteration principle is proved in a partially ordered normed linear space and applied to the coupled periodic boundary value problems for proving the main existence and approximation results of this paper. An algorithm for the coupled solutions is developed and it is shown that the sequences of successive approximations defined in a certain way converge monotonically to the coupled solutions of the related differential equations under some suitable mixed hybrid conditions. A numerical example is also indicated to illustrate the abstract theory developed in the paper.