Acknowledgement
Supported by : National Natural Science Foundation of China
References
- R. A. Adams, Sobolev Space, Academic Press, New York, 1975.
- F. Bernis and A. Friedman, Higher order nonlinear degenerate parabolic equations, J. Differential Equations 83 (1990), no. 1, 179-206. https://doi.org/10.1016/0022-0396(90)90074-Y
- J. M. Cahn and J. E. Hilliard, Free energy of a non-uniform system I. Interfacial free energy, J. Chem. Phys. 28 (1958), 258-367. https://doi.org/10.1063/1.1744102
- J. A. Carrillo and G. Toscani, Long-time asymptotics for strong solutions of the thin film equation, Commu. Math. Phys. 225 (2002), no. 3, 551-571. https://doi.org/10.1007/s002200100591
- D. Gilbarg and N. S. Trudinger, Elliptic Partial Different Equations of Second Order, Second ed., Springer-Verlag, New York, 1983.
- G. Grun, Degenerate parabolic differential equations of fourth order and a plasticity model with nonlocal hardening, Z. Anal. Anwendungen 14 (1995), no. 3, 541-574. https://doi.org/10.4171/ZAA/639
- B. Liang and S. Zheng, Existence and asymptotic behavior of solutions to a nonlinear parabolic equation of fourth-order, J. Math. Anal. Appl. 348 (2008), no. 1, 234-243. https://doi.org/10.1016/j.jmaa.2008.07.022
- T. G. Myers, Thin films with high surface tension, SIAM Rev. 40 (1998), no. 3, 441-462. https://doi.org/10.1137/S003614459529284X
-
J. Simon, Compact sets in the space
$L^p$ (0, T;B), Ann. Math. Pura. Appl. 146 (1987), 65-96. - M. Xu and S. Zhou, Existence and uniqueness of weak solutions for a generalized thin film equation, Nonlinear Anal. 60 (2005), no. 4, 755-774. https://doi.org/10.1016/j.na.2004.01.013
- M. Xu and S. Zhou, Stability and regularity of weak solutions for a generalized thin film equation, J. Math. Anal. Appl 337 (2008), no. 1, 49-60. https://doi.org/10.1016/j.jmaa.2007.03.075