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EXISTENCE OF SOLUTIONS TO A GENERALIZED

SELF-DUAL CHERN-SIMONS EQUATION ON FINITE

GRAPHS

Yuanyang Hu

Abstract. Let G = (V,E) be a connected finite graph. We study the

existence of solutions for the following generalized Chern-Simons equation

on G

∆u = λeu (eu − 1)5 + 4π

N∑
s=1

δps ,

where λ > 0, δps is the Dirac mass at the vertex ps, and p1, p2, . . . , pN
are arbitrarily chosen distinct vertices on the graph. We show that there

exists a critical value λ̂ such that when λ > λ̂, the generalized Chern-

Simons equation has at least two solutions, when λ = λ̂, the generalized

Chern-Simons equation has a solution, and when λ < λ̂, the generalized

Chern-Simons equation has no solution.

1. Introduction

In recent years, increasing efforts have been devoted to the development of
partial differential equations on graphs. For heat equations on graphs, various
methods and techniques have been used to study the existence and qualita-
tive properties of solutions. Lin and Wu [15, 22] established the existence and
nonexistence of global solutions for semilinear heat equations on finite or lo-
cally finite connected weighted graphs. Bauer et al. [2] established the Li-Yau
gradient estimate for the heat kernel on graphs. Horn et al. [12] proved Li-
Yau-type estimates for bounded and positive solutions of the heat equation
on graphs. For elliptic equations on graphs, there have been extensive liter-
ature; see, for example, [4, 7, 9, 10, 13] and the references therein. Bendito et
al. [4] constructed solutions of self-adjoint boundary value problems on finite
graphs. Ge, Hua and Jiang [7] studied the Liouville equation −∆u = eu on a
graph satisfying a certain isoperimetric inequality. In [9], Ge and Jiang studied
the 1-Yamabe equation ∆1u + g Sgn(u) = h|u|α−1 Sgn(u) on connected finite
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graphs. Grigor’yan, Lin, and Yang [10] studied the Kazdan-Warner equation
on a finite graph. Ge and Jiang [8] used a heat flow method to study the
Kazdan-Warner equation on an infinite graph. By the method of Brouwer de-
gree, Sun and Wang [19] and Liu [16] established the existence of solutions to
the Kazdan-Warner equation and the mean field equation respectively on finite
graphs.

Abrikosov [1] considered configurations of magnetic vortices in the context
of the Ginzburg-Landau theory of superconductivity. Subsequently, Nielsen
and Olesen pointed out the relevance to high energy physics of vortex line
solutions of the Abelian Higgs model in the context of string dual models [18].
Since then, interest in vortices has continued to grow in both condensed matter
and particle physics. Self-dual Chern-Simons models now play an important
role in various areas of physics. Recently, there has been a growing amount
of effort devoted to the existence of vortices to the self-dual Chern-Simons
models. See, for example, [3, 6, 11, 21, 23] and the references therein. Caffarelli
and Yang [5] established the existence of condensates or periodic multivortices
in the Abelian Chern-Simons-Higgs model. A generalized Chern-Simons model
was proposed by Bazeia et al. [3], who obtained a generalized self-dual Chern-
Simons equation. The existence of doubly periodic multi-vortex solutions to
a generalized self-dual Chern-Simons model was subsequently established by
Han [11].

Recently, there have been many studies of Chern-Simons equations on
graphs. See, for example, [13,14,17] and the references therein. In [14], Huang,
Lin, and Yau studied the mean field equation

(1) ∆u = λeu (eu − 1) + 4π

M∑
j=1

δpj

on a connected finite graph G = (V,E), and proved an existence result to (1).
In [13], Hou and Sun established the existence of solutions to a generalized
Chern-Simons-Higgs equation. In [17], Lü and Zhong considered a generalized
self-dual Chern-Simons equation on a finite graph.

Motivated by these works, we are concerned in this article the following
generalized self-dual Chern-Simons equation derived from Han [11], i.e.,

(2) ∆u = λeu (eu − 1)
5
+ 4π

N∑
s=1

δps

on a finite connected graph G, where λ > 0, δps
satisfies

(3) δpj =

{
1

µ(pj)
, at pj ,

0, otherwise,

and p1, p2, . . . , pN are arbitrarily chosen distinct vertices on the graph.
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The rest of the paper is arranged as below. In Section 2, we present some
results that we will use in the following pages and state the main theorem. In
Section 3, we prove Theorem 2.5.

2. Preliminary results

Let G = (V,E) be a connected finite graph, where V denotes the set of
vertices and E denotes the edge set. Throughout this paper, all graphs are
assumed to be connected. For each edge xy ∈ E, we suppose that its weight
wxy > 0 and that wxy = wyx. Set µ : V → (0,+∞) be a finite measure. For
any function u : V → R, the Laplacian of u is defined by

(4) ∆u(x) =
1

µ(x)

∑
y∼x

wyx(u(y)− u(x)),

where y ∼ x means xy ∈ E. The gradient form of u and v reads

(5) Γ(u, v)(x) =
1

2µ(x)

∑
y∼x

wxy(u(y)− u(x))(v(y)− v(x)).

We denote the length of the gradient of u by

|∇u|(x) =
√
Γ(u, u)(x) =

(
1

2µ(x)

∑
y∼x

wxy(u(y)− u(x))2

)1/2

.

Denote, for any function u : V → R, an integral of u on V by∫
V

udµ =
∑
x∈V

µ(x)u(x).

Denote

|V | = Vol(V ) =
∑
x∈V

µ(x)

the volume of V . For p ≥ 1, denote ||u||p := (
∫
V
|u|pdµ)

1
p . Define a Sobolev

space and a norm on it by

W 1,2(V ) =

{
u : V → R :

∫
V

(
|∇u|2 + u2

)
dµ < +∞

}
,

and

∥u∥H1(V ) = ∥u∥W 1,2(V ) =

(∫
V

(
|∇u|2 + u2

)
dµ

)1/2

.

To prove our main result, we need the following Sobolev embedding, Poincare
inequality and maximum principle on graphs.

Lemma 2.1 ([10, Lemma 5]). Let G = (V,E) be a finite graph. The Sobolev
space W 1,2(V ) is precompact. Namely, if {uj} is bounded in W 1,2(V ), then
there exists some u ∈ W 1,2(V ) such that up to a subsequence, uj → u in
W 1,2(V ).
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Lemma 2.2 ([10, Lemma 6]). Let G = (V,E) be a finite graph. For all func-
tions u : V → R with

∫
V
udµ = 0, there exists some constant C depending only

on G such that ∫
V

u2dµ ≤ C

∫
V

|∇u|2dµ.

Lemma 2.3 ([14, Lemma 4.1]). Let G = (V,E), where V is a finite set, and
K ≥ 0 is a constant. Suppose a real function u : V → R satisfies

(∆−K)u(x) ≥ 0

for all x ∈ V . Then u(x) ≤ 0 for all x ∈ V .

Lemma 2.4. Let G = (V,E) be a finite graph. For all functions u : V → R
with

∫
V
udµ = 0 and p ≥ 1, there exists a constant C = C(G, p) such that

||u||p ≤ C||∇u||2.

Proof. By Lemma 2.2, there exists C = C(G) such that

M := max
x∈V

|u(x)| ≤ (
C

min
V

µ

∫
V

|∇u|2dµ) 1
2 .

Thus we have

||u||p ≤ (
C

min
V

µ

∫
V

|∇u|2dµ) 1
2 |V |1/p := C2||∇u||2.

□

We are now ready to delineate the major result of this article.

Theorem 2.5. Let G = (V,E) be a finite connected graph. Then there exists
a critical value

λ̂ ≥ 66

55
4πN

Vol(V )

such that if λ > λ̂, then (2) has at least two solutions, if λ = λ̂, then (2) has a

solution, and if λ < λ̂, then (2) admits no solution.

3. The proof of Theorem 2.5

Since
∫
V
− 4πN

Vol(V ) + 4π
∑N

j=1 δpjdµ = 0, we can choose a solution u0 of the

equation

(6) ∆u0 = − 4πN

Vol(V)
+ 4π

N∑
j=1

δpj
.

Letting u = u0+v, the equation (2) can be reduced to the following question

(7) ∆v = λeu0+v
(
eu0+v − 1

)5
+

4πN

Vol(V )
.
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Set F (y) := (ey − 1)5ey on R, it is clear that F has a unique minimal value

− 55

66 . Thus, it follows from (7) that

0 =

∫
V

∆vdµ ≥ λ

∫
V

−55

66
dµ+ 4πN = −55

66
λVol(V ) + 4πN.

This implies that

λ ≥ 66

55
4πN

|V |
,

which is a necessary condition for the existence of solutions to (2).
To solve (7), for a constantK ≥ λ, we define a sequence {wn} by a monotone

iterative scheme:

(8)

(∆−K)Wn = λeu0+Wn−1
(
eu0+Wn−1 − 1

)5
−KWn−1 +

4πN

Vol(V )
, n = 1, 2, . . . ,

W0 = − u0.

Next, we establish a solution to (7) by a supersolution and subsolution
method.

Definition. A function u on V is called a subsolution of (7) if

∆u ≥ λeu0+u
(
eu0+u − 1

)5
+

4πN

Vol(V )
.

Lemma 3.1. Let Wn be a sequence defined by scheme (8) with K ≥ λ. Then

(9) W− ≤ · · · ≤ Wn ≤ · · · ≤ W2 ≤ W1 ≤ W0

for any subsolution W− of (7).

Proof. By (6) and (8), we have

(10) (∆−K)(W1 −W0) = 4π

N∑
s=1

δps
> 0, x ∈ V.

By Lemma 2.3, we deduce that

(W1 −W0)(x) ≤ 0

for all x ∈ V . Suppose that

W0 ≥ W1 ≥ · · · ≥ Wk.

By (8), we conclude that

(∆−K) (Wk+1 −Wk)

= λeu0+Wk
(
eu0+Wk − 1

)5 − λeu0+Wk−1
(
eu0+Wk−1 − 1

)5 −K (Wk −Wk−1)

=
[
λeu0+ξ

(
eu0+ξ − 1

)4 (
6eu0+ξ − 1

)
−K

]
(Wk −Wk−1)

≥ (λ−K) (Wk −Wk−1) ≥ 0,
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where Wk ≤ ξ ≤ Wk−1. By Lemma 2.3, we see that Wk+1 ≤ Wk on V .
Set (W− −W0)(x0) = maxx∈V (W− −W0)(x), we claim that

(W− −W0)(x0) ≤ 0.

Otherwise, (W− −W0)(x0) > 0. It follows that

∆(W− −W0)(x0) ≥ λeu0+W−(x0)(eu0+W−(x0) − 1)5 +
4πN

Vol(V )
+ ∆u0 > 0.

By the definition of Laplace operator, we obtain

∆(W− −W0)(x0) ≤ 0.

This is a contradiction. Thus we have

(W− −W0)(x0) ≤ 0,

which implies that

W− −W0 ≤ 0

on V . Assume that W− −Wk ≤ 0 for some integer k ≥ 0. Thanks to W− is a
subsolution of (7) and K ≥ λ, we deduce that

(∆−K) (W− −Wk+1)

≥ λ
[
eu0+W−

(
eu0+W− − 1

)5 − eu0+Wk
(
eu0+Wk − 1

)5]−K (W− −Wk)

≥
[
λeu0+η

(
eu0+η − 1

)4 (
6eu0+η − 1

)
−K

]
(W− −Wk)

≥ (λ−K) (W− −Wk) ≥ 0,

where W− ≤ η ≤ Wk. By Lemma 2.3, we have W− ≤ Wk+1 on V .
We now complete the proof. □

Lemma 3.2. If λ > 0 is sufficiently large, then there exists a solution of (7)
on V .

Proof. Assume that u0 is a solution of (7). Select a constant Q0 such that

u0 < Q0. Let Ŵ− ≡ −Q0 on V , then for sufficiently large λ, we have

0 = ∆Ŵ− > λeu0+Ŵ−(eu0+Ŵ− − 1)5 +
4πN

Vol(V )
.

Thus Ŵ− is a subsolution of (7). By Lemma 3.1, we get a sequence {Wn}
satisfying

Ŵ− ≤ · · · ≤ Wn ≤ · · · ≤ W2 ≤ W1 ≤ −u0.

Thus we can define

w(x) := lim
n→+∞

Wn(x).

Letting n → +∞ in (8), then we know that w is a solution of (7). □

In order to prove Lemma 3.4, we need the following proposition.

Lemma 3.3. If u is a solution of equation (2) in V , then u < 0 on V .
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Proof. Suppose that

u(x0) = max
x∈V

u(x),

we claim that u(x0) < 0. Suppose by way of contradiction that u(x0) ≥ 0, then

eu(x0) − 1 ≥ 0,

which implies that ∆u(x0) > 0. By (4), we have

0 ≥ ∆u(x0).

This is a contradiction. □

Lemma 3.4. There exists λ̂ ≥ 4πN
Vol(V )

66

55 such that when λ ≥ λ̂, (2) admits a

solution, and when λ < λ̂, (2) admits no solutions.

Proof. Denote A := {λ > 0 |λ is such that (2) admits a solution}. We claim
that A is an interval. If λ0 ∈ A, let v′ be the solution of (2) with λ = λ0. By
Lemma 3.3, we have

v′ < 0 on V.

Set u′ = v′ − u0, then

u′ + u0 < 0 on V.

It is easy to check that u′ is a subsolution of (7) for λ ≥ λ0. It follows from
Lemma 3.1 that λ ∈ A for λ ≥ λ0. Thus A is an interval. Clearly,

λi := inf A

is well defined. We can choose a sequence {λn} ⊂ A such that λn → λi. On

account of λn ≥ 4πN
Vol(V)

66

55 , we obtain

λi ≥
4πN

Vol(V )

66

55
.

For any λ > λ̂, we can find a solution of (7) denoted by uλ(x). We next

prove that if λ1 > λ2 > λ̂, then uλ1
≥ uλ2

on V . By Lemma 3.3, u0 + uλ2
< 0.

Thus we deduce that

∆uλ2
= λ2e

u0+uλ2

(
eu0+uλ2 − 1

)5
+

4πN

Vol(V )

> λ1e
u0+uλ2

(
eu0+uλ2 − 1

)5
+

4πN

Vol(V )
,

and hence that uλ2
is a subsolution of (7) with λ = λ1. By a similar argument

as Lemma 3.1, we can show that

(11) uλ2
≤ uλ1

on V.

Thus we can define U(x) := limλ→λ̂+ uλ(x) ∈ [−∞,−u0).
We claim that

(12) U(x) > −∞ ∀x ∈ V.
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Suppose that limλ→λ̂+ uλ(x) = −∞ for all x ∈ V . Integrating

(13) ∆uλ = λeu0+uλ
(
eu0+uλ − 1

)5
+

4πN

Vol(V )

on V , we obtain

(14)

0 =

∫
V

∆uλdµ =

∫
V

λeu0+uλ
(
eu0+uλ − 1

)5
dµ+ 4πN

= λ
∑
x∈V

µ(x)eu0+uλ
(
eu0+uλ − 1

)5
dµ+ 4πN.

Letting λ → λ̂+ in (14), we see that 0 = 4πN , which is a contradiction. Define

(15) V1 :=

{
x ∈ V | lim

λ→λ̂+

uλ = −∞
}

and

(16) V2 :=

{
x ∈ V | lim

λ→λ̂+

uλ exists in (−∞,−u0)

}
.

If V1 = ∅, then (12) holds. Next, we suppose that V1 ̸= ∅ and V2 ̸= ∅. Choose
y2 ∈ V2, then

∆uλ (y2)

=
1

µ (y2)

∑
x∼y2

wxy2 (uλ(x)− uλ (y2))

=
1

µ (y2)

∑
y∼y2,y∈V1

wyx2
(uλ(y)−uλ (y2))+

1

µ(y2)

∑
y∼y2,y∈V2

wyx2
(uλ(y)−uλ (y2))

=: I1(λ) + I2(λ).

Clearly, limλ→λ̂+ I1(λ) = −∞ and limλ→λ̂+ I2(λ) exists in R. By (13), we have

∆uλ(y2) ≥ λ(−55

66
) +

4πN

Vol(V )
.

This is impossible. Thus we have V1 = ∅.
Letting λ → λ̂+ in (13), we can deduce that U is a solution of (7) with

λ = λ̂. □

Define

(17) Iλ(v) :=

∫
V

1

2
|∇v|2 + λ

6

(
eu0+v − 1

)6
+

4πN

Vol(V )
vdµ.

We may give a sufficient condition under which the problem (7) admits a
solution and Iλ(v) has a minimizer.

Lemma 3.5. If λ > λ̂, then there exists a solution vλ of (7) and it is a local
minimum of the functional Iλ(v) defined by (17).
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Proof. Thanks to u0+U(x) < 0, we conclude that U(x) is a subsolution of (7)

for λ > λ̂. We define

A =
{
v ∈ W 1,2 | v ≥ U in V

}
.

Clearly, Iλ is bounded from below on V . Thus we can define

η0 := inf
v∈A

Iλ(v).

Set {vn} be a minimizing sequence and vn = v′n + cn, n = 1, 2, . . . , where

cn =

∫
V
vndµ

Vol(V)
.

It is easy to see that

cn ≥
∫
V
Udµ

Vol(V)
.

Thus, we get

(18) Iλ (vn) ≥
∫
V

1

2
|∇vn|2 dµ+

4πN

Vol(V)

∫
V

Udµ,

which implies that {∥∇vn∥2}∞n=1 is bounded. By (17), we have

Iλ(vn) ≥
∫
V

4πN

Vol(V)
cndµ,

which implies that

cn ≤ Iλ(vn)

4πN
.

Thus, {vn} is bounded in W 1,2(V ). Since V is a finite graph, by passing to a
subsequence, there exists vλ(x) such that

vn(x) → vλ(x)

as n → +∞, for every x ∈ V . Thus

Iλ(vλ) = η0.

By a similar argument as the appendix of [20], we can deduce that vλ is a
solution of (7).

We next show that vλ > U in V . It is easy to check that

(19) ∆(U − vλ) > λ̂(U − vλ).

By Lemma 2.3, we have W := U − vλ ≤ 0 on V . We claim that

W (x0) := max
V

W < 0.

Otherwise, W (x0) = 0. Clearly, ∆W (x0) ≤ 0. By (19), we obtain W (x0) < 0,
which is a contradiction. Thus we have

U < vλ on V.
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We claim that vλ is a local minimum of Iλ(v) in A. For any integer n ≥ 1,
we see that

(20) inf

{
Iλ(w) | w ∈ W 1,2(V ), ∥w − vλ∥W 1,2(V ) ≤

1

n

}
= εn < Iλ(vλ).

By a similar argument as above, we can deduce that there exists a sequence

{vn}∞n=1 ⊂ W 1,2(V )

satisfying

∥vn − vλ∥W 1,2(V ) ≤
1

n
and

Iλ(vn) = ϵn.

Thus we conclude that, by passing to a subsequence, vn → vλ in V as n → +∞,
and hence that vn > U for sufficiently large n. Therefore, we obtain

Iλ(vn) ≥ Iλ(vλ).

This is a contradiction. □

We now prove that Iλ(v) satisfies the Palais-Smale condition.

Lemma 3.6. Every sequence {vn} ⊂ W 1,2(V ) satisfying

(21) Iλ(vn) → α and ∥I
′

λ(vn)∥ → 0 as n → +∞
has a convergent subsequence.

Proof. From (21), we deduce that

(22)

1

2
∥∇vn∥22 +

λ

6

∫
V

(
eu0+vn − 1

)6
dx+

4πN

|V |

∫
V

vn dx

= α+ o(1) as n → +∞
and that there exists {ϵn}∞n=1 satisfying ϵn → ∞ as n → ∞ such that

(23)

∣∣∣∣∫
V

Γ(vn, φ)dx+ λ

∫
V

eu0+vn
(
eu0+vn − 1

)5
φdx+

4πN

|V |

∫
V

φdx

∣∣∣∣
≤ εn∥φ∥W 1,2(V )

as n → +∞, for any φ ∈ H1(V ). By taking φ ≡ 1 in (23), we have

λ

∫
V

eu0+vn
(
eu0+vn − 1

)5
dx+ 4πN ≤ εn|V |1/2,

from which we deduce that

εn|V |1/2

λ
≥ 4πN

λ
+

∫
V

eu0+vn
(
eu0+vn − 1

)5
dµ

=
4πN

λ
+

∫
V

(
eu0+vn − 1

)6
dµ+

∫
V

(
eu0+vn − 1

)5
dµ

≥ 4πN

λ
− 1

6
|V |+ 1

6

∫
V

(
eu0+vn − 1

)6
dµ.
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This implies that there exists a constant C = C(ϵn, λ, |V |) > 0 such that

(24)

∫
V

(
eu0+vn − 1

)6
dµ ≤ C.

Hence, we can find C2 > 0 such that

(25)

∫
V

e6(u0+vn)dµ =

∫
V

[(
eu0+vn − 1

)
+ 1
]6

dµ

≤ 26
[∫

V

(
eu0+vn − 1

)6
dµ+ |V |

]
≤ C2.

Then by Hölder inequality, there exists C3 > 0 such that

(26)

∫
V

e2(u0+vn)dµ ≤
(∫

V

e6(u0+vn)dµ

) 1
3

|V | 23 ≤ C3.

Similarly,
∫
V
e4(u0+vn)dµ ≤ C4 for a suitable constant C4 > 0. Decompose

vn = v′n + cn, where
∫
V
v′ndµ = 0 and cn ∈ R for n = 1, 2, . . . . Substituting it

in (22), we conclude that

(27)
1

2
∥∇v′n∥

2
2 +

λ

6

∫
V

(
eu0+v′

n+cn − 1
)6

dµ+ 4πNcn → α

as n → +∞, and hence that cn is bounded from above. By (22), we see that
there exists an integer N such that

α− 1 < Iλ(vn) < α+ 1

for n ≥ N . This implies that

(28) α− 1 <
1

2
∥∇v′n∥

2
2 +

λ

6

∫
V

(
eu0+v′

n+cn − 1
)6

dµ+ 4πNcn < α+ 1.

From (24) and (28), we conclude that

(29) α− 1 +
4λπN

5
−
(
λ

6
+

εn
5

)
|V | < 1

2
∥∇v′n∥

2
2 + 4πNcn < α+ 1.

Next we show that cn is bounded from below. Taking v′n in (23), by Lemma
2.2, we can find a constant C5 such that

(30)
∥∇v′n∥

2
2 + λ

∫
V

eu0+vn
(
eu0+vn − 1

)5
v′ndµ ≤ εn ∥v′n∥W 1,2(V )

≤ C5εn ∥∇v′n∥2 .
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This implies that

(31)

∥∇v′n∥22 + λ

∫
V

e6(u0+cn)
(
e6v

′
n − 1

)
v′ndµ

≤ λ

∫
V

e6(u0+cn)v′ndµ+ C5εn ∥∇v′n∥2

+ C6

∫
V

eu0+vn
(
e4(u0+vn) + e3(u0+vn) + e2(u0+vn) + eu0+vn + 1

)
|v′n|dµ.

By Lemma 2.2, Lemma 2.4 and Hölder inequality, we deduce that

(32)

∫
V

e6(u0+cn)v′ndµ ≤ C7 ∥v′n∥2 ≤ C8 ∥∇v′n∥2 ,

and

(33)

∫
V

e5(u0+vn) |v′n|dµ ≤
(∫

V

e6(u0+vn)dµ

) 5
6
(∫

V

|v′n|
6
dµ

) 1
6

≤ C9 ∥v′n∥6
≤ C10 ∥∇v′n∥2

for suitable positive constants C7, . . . , C10. Similarly, we can get all the other
terms on the right hand side of (31) can be bounded by Ĉ||∇v′n||2, where Ĉ > 0
is a constant. Thus, there exists a constant C11 > 0 such that

(34) ∥∇v′n∥
2
2 + λ

∫
V

e6(u0+cn)
(
e6v

′
n − 1

)
v′ndµ ≤ C11 ∥∇v′n∥2 .

Clearly,

(35)

∫
V

e6(u0+cn)
(
e6v

′
n − 1

)
v′ndµ ≥ 0.

Hence by (34), we have
||∇v′n||2 ≤ C12

for a suitable constant C12 > 0. Therefore, by (29), we deduce that cn is
bounded from below.

Thus {vn} is bounded in H1(V ). Thus, there exists v ∈ H1(V ) such that,
by passing to a subsequence, vn(x) → v(x) for all x ∈ V . □

Next, we find the second solution of (7). From now on, we suppose that vλ
is the local minimum as defined by Lemma 3.5 (if not, we could have already
found our second solution). Thus there exists ρ0 > 0 such that

Iλ(vλ) ≤ Iλ(v)

for all v : ||v − vλ||H1(V ) ≤ ρ0. For c > 0, we have

(36)
Iλ (vλ−c)− Iλ (vλ) =

λ

6

∫
V

[(
eu0+vλ−c − 1

)6−(eu0+vλ−1
)6]

dµ− 4πNc

<
λ

6
|V |C13 − 4πNc → −∞ as c → +∞.
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There are two possibilities: (I) vλ is not a strict local minimum for Iλ, (II) vλ
is a strict local minimum for Iλ. If case (I) happens, then we deduce that

inf
∥v−vλ∥H1(V )=ρ

Iλ = Iλ (vλ) =: αλ

for all 0 < ρ < ρ0. It follows that there exists a local minimum vρ ∈ H1(V )
such that

||vρ − vλ|| = ρ,

and
Iλ(vρ) = αλ

for all ρ ∈ (0, ρ0). Therefore, in this situation, we get a one-parameter family
of solutions of (7). If case (II) happens, we can find ρ1 ∈ (0, ρ0) such that

(37) inf
∥v−vλ∥H1(V )=ρ1

Iλ(v) > Iλ (vλ) = αλ.

By (36), we deduce that

Iλ (uλ − c0) ≤ Iλ (uλ)− 1 < Iλ (vλ)

for some c0 > |V |− 1
2 ρ1.

We now define

P=
{
γ : [0, 1] → H1(V ) | γ is continuous and satisfies γ(0)=vλ, γ(1)=vλ−c0

}
and

α = inf
γ∈P

sup
t∈[0,1]

Iλ(γ(t)).

From (37), we conclude that

α > Iλ (vλ) ≥ max {Iλ(γ(0)), Iλ(γ(1))} ∀γ ∈ P.

Thus, by Lemma 3.6 , Iλ satisfies the hypothesis of the mountain-pass theorem.
Thus α is a critical point of Iλ. By virtue of α > Iλ(vλ), we get a second solution
of (7).

We now complete the proof of Theorem 2.5.
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