• Title/Summary/Keyword: evolutionary robotics

Search Result 112, Processing Time 0.033 seconds

Optimal trajectory control for robot manipulator using evolutionary algorithm (진화 알고리즘에 의한 로봇 매니퓰레이터의 최적 궤적 제어)

  • 김기환;박진현;최영규
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.1181-1184
    • /
    • 1996
  • As usual systems, robot manipulators have also physical constraints for operating. It is a difficult problem that we operate manipulator in the minimal time under these constraints. In this paper, we solve this problem dividing it into two steps. In the first step, we find the minimal time trajectories by optimizing qubic polynomial joint trajectories using evolutionary algorithms. In the second step, we optimize controller for robot manipulator to track precisely trajectories optimized in the previous step.

  • PDF

Performance Comparison of CEALM and NPSOL

  • Seok, Hong-Young;Jea, Tahk-Min
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.169.4-169
    • /
    • 2001
  • Conventional methods to solve the nonlinear programming problem range from augmented Lagrangian methods to sequential quadratic programming (SQP) methods. NPSOL, which is a SQP code, has been widely used to solve various optimization problems but is still subject to many numerical problems such as convergence to local optima, difficulties in initialization and in handling non-smooth cost functions. Recently, many evolutionary methods have been developed for constrained optimization. Among them, CEALM (Co-Evolutionary Augmented Lagrangian Method) shows excellent performance in the following aspects: global optimization capability, low sensitivity to the initial parameter guessing, and excellent constraint handling capability due to the benefit of the augmented Lagrangian function. This algorithm is ...

  • PDF

Two Phase Algorithm in Optimal Control

  • Park, Chungsik;Lee, Tai-Yong
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1999.10a
    • /
    • pp.252-255
    • /
    • 1999
  • Feed rate in the fed-batch reactor is the most important control variable in optimizing the reactor performance. Exact solution can be obtained only for limited cases of simple reactor. The complexity of the model equations makes it extremely difficult to solve fur the general class of system models. Evolutionary programming method is proposed to get the information of the profile types, and the final profile is calculated by that information. The modified evolutionary programming method is used to get the more optimal profiles and it is demonstrated that proposed method can solve a wide range of optimal control problems.

  • PDF

Look at the future´s control from artificial life

  • Tomoo, Aoyama;Zhang, Y.G.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.88.2-88
    • /
    • 2001
  • In this paper Author introduce a new field named Artificial Life and its main directions of research. That is the research of evolutionary robot and artificial brain. Then author explored the advanced scientific thought hidden in them. Furthermore, the author tries intuitively to show a new type of control that is heuristically raised from artificial life research. It could be named as evolutionary control. This type of control is more like human body´s structure, and it is self-organized.

  • PDF

Game Model Based Co-evolutionary Solution for Multiobjective Optimization Problems

  • Sim, Kwee-Bo;Kim, Ji-Yoon;Lee, Dong-Wook
    • International Journal of Control, Automation, and Systems
    • /
    • v.2 no.2
    • /
    • pp.247-255
    • /
    • 2004
  • The majority of real-world problems encountered by engineers involve simultaneous optimization of competing objectives. In this case instead of single optima, there is a set of alternative trade-offs, generally known as Pareto-optimal solutions. The use of evolutionary algorithms Pareto GA, which was first introduced by Goldberg in 1989, has now become a sort of standard in solving Multiobjective Optimization Problems (MOPs). Though this approach was further developed leading to numerous applications, these applications are based on Pareto ranking and employ the use of the fitness sharing function to maintain diversity. Another scheme for solving MOPs has been presented by J. Nash to solve MOPs originated from Game Theory and Economics. Sefrioui introduced the Nash Genetic Algorithm in 1998. This approach combines genetic algorithms with Nash's idea. Another central achievement of Game Theory is the introduction of an Evolutionary Stable Strategy, introduced by Maynard Smith in 1982. In this paper, we will try to find ESS as a solution of MOPs using our game model based co-evolutionary algorithm. First, we will investigate the validity of our co-evolutionary approach to solve MOPs. That is, we will demonstrate how the evolutionary game can be embodied using co-evolutionary algorithms and also confirm whether it can reach the optimal equilibrium point of a MOP. Second, we will evaluate the effectiveness of our approach, comparing it with other methods through rigorous experiments on several MOPs.

Co-Evolution of Fuzzy Rules and Membership Functions

  • Jun, Hyo-Byung;Joung, Chi-Sun;Sim, Kwee-Bo
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1998.06a
    • /
    • pp.601-606
    • /
    • 1998
  • In this paper, we propose a new design method of an optimal fuzzy logic controller using co-evolutionary concept. In general, it is very difficult to find optimal fuzzy rules by experience when the input and/or output variables are going to increase. Futhermore proper fuzzy partitioning is not deterministic ad there is no unique solution. So we propose a co-evolutionary method finding optimal fuzzy rules and proper fuzzy membership functions at the same time. Predator-Prey co-evolution and symbiotic co-evolution algorithms, typical approaching methods to co-evolution, are reviewed, and dynamic fitness landscape associated with co-evolution is explained. Our algorithm is that after constructing two population groups made up of rule base and membership function, by co-evolving these two populations, we find optimal fuzzy logic controller. By applying the propose method to a path planning problem of autonomous mobile robots when moving objects applying the proposed method to a pa h planning problem of autonomous mobile robots when moving objects exist, we show the validity of the proposed method.

  • PDF

Generation Method of Robot Movement Using Evolutionary Algorithm (진화 알고리즘을 사용한 휴머노이드 로봇의 동작 학습 알고리즘)

  • Park, Ga-Lam;Ra, Syung-Kwon;Kim, Chan-Hwan;Song, Jae-Bok
    • Proceedings of the KIEE Conference
    • /
    • 2007.10a
    • /
    • pp.315-316
    • /
    • 2007
  • This paper presents a new methodology to improve movement database for a humanoid robot. The database is initially full of human motions so that the kinetics characteristics of human movement are immanent in it. then, the database is updated to the pseudo-optimal motions for the humanoid robot to perform more natural motions, which contain the kinetics characteristics of robot. for this, we use the evolutionary algorithm. the methodology consists of two processes : (1) the offline imitation learning of human movement and (2) the online generation of natural motion. The offline process improve the initial human motion database using the evolutionary algorithm and inverse dynamics-based optimization. The optimization procedure generate new motions using the movement primitive database, minimizing the joint torque. This learning process produces a new database that can endow the humanoid robot with natural motions, which requires minimal torques. In online process, using the linear combination of the motion primitive in this updated database, the humanoid robot can generate the natural motions in real time. The proposed framework gives a systematic methodology for a humanoid robot to learn natural motions from human motions considering dynamics of the robot. The experiment of catching a ball thrown by a man is performed to show the feasibility of the proposed framework.

  • PDF

Evoluationary Design of a Fuzzy Logic Controller For Multi-Agent Robotic Systems

  • Jeong, ll-Kwon1;Lee, Ju-Jang
    • Transactions on Control, Automation and Systems Engineering
    • /
    • v.1 no.2
    • /
    • pp.147-152
    • /
    • 1999
  • It is an interesting area in the field of artifical intelligence to find an analytic model of cooperative structure for multiagent system accomplishing a given task. Usually it is difficult to design controllers for multi-agent systems without a comprehensive knowledge about the system. One of the way to overcome this limitation is to implement an evolutionary approach to design the controllers. This paper introduces the use of a genetic algorithm to discover a fuzzy logic controller with rules that govern emergent agents solving a pursuit problem in a continuous world. Simulation results indicate that, given the complexity of the problem, an evolutionary approach to find the fuzzy logic controller seems to be promising.

  • PDF

Pareto RBF network ensemble using multi-objective evolutionary computation

  • Kondo, Nobuhiko;Hatanaka, Toshiharu;Uosaki, Katsuji
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.925-930
    • /
    • 2005
  • In this paper, evolutionary multi-objective selection method of RBF networks structure is considered. The candidates of RBF network structure are encoded into the chromosomes in GAs. Then, they evolve toward Pareto-optimal front defined by several objective functions concerning with model accuracy and model complexity. An ensemble network constructed by such Pareto-optimal models is also considered in this paper. Some numerical simulation results indicate that the ensemble network is much robust for the case of existence of outliers or lack of data, than one selected in the sense of information criteria.

  • PDF

A Consideration on Load Disturbance Characteristics of Realtime Adaptive Learning Controller based on an Evolutionary algorithms - Application to an Electro Hydraulic Servo System

  • Sung-Ouk;Lee, Jin-Kul
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.176.3-176
    • /
    • 2001
  • Hydraulic servo system has the characteristic of high power in itself, as combining its characteristics with excellent electro equipment that comes from the development of electronics, electro-hydraulic servo system is widely used in industry that are requested high precision and power Electro-hydraulic servo system is characteristic of very strong non-linearity in itself and it is mainly applied the field of the inner or outer fluctuating load or disturbance in industry. Evolutionary computation based on the natural evolutionary process may solve many engineering problems. Algorithms can represent the natural selection in crossovers, mutations, production of the offspring, selection, etc. Nature has already shown is the superiority through ...

  • PDF