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Abstract

In this paper, we propose a new design method of an optimal fuzzy logic controller using co-evolutionary
concept. In general, it is very difficult to find optimal fuzzy rules by experience when the input and/or output
variables are going to increase. Futhermore proper fuzzy partitioning is not deterministic and there is no
unique solution. So we propose a co-evolutionary method finding optimal fuzzy rules and proper fuzzy
membership functions at the same time. Predator-Prey co-evolution and symbiotic co-evolution algorithms,
typical approaching methods to co-evolution, are reviewed, and dynamic fitness landscape associated with
co-evolution is explained. Our algorithm is that after constructing two population groups made up of rule base
and membership function, by co-evolving these two populations, we find optimal fuzzy logic controller. By
applying the proposed method to a path planning problem of autonomous mobile robots when moving objects

exist, we show the validity of the proposed method.

Keywords

1. Introduction

Recently artificial life concept was proposed by
C. Langton and has become one of the most popular
research area as a solution of intelligent information
processing system under uncertain, complex and
dynamic environment. Main issue in artificial life is
how to implement something lifelike with computer

and robots by synthesizing phenomena normally
associated  with  natural living systems. The
evolutionary computation based on the natural

selection theory plays an important role in artificial
life.

The concept of natural selection has influenced
our view of biological systems tremendously.
Evolutionary  Algorithms(EAs) are  computational
models of living system's evolution process and
population-based optimization methods. EAs can
provide many opportunities for obtaining a global
optimal solution, but the performance of a system is
deterministic depending on the fitness function given
by a system designer. Thus EAs generally work on
static fitness landscapes. But natural evolution works
on dynamic fitness landscapes that change over
evolutionary time as a result of co-evolution. And
co-evolution between different species or different
organs results in the current state of complex natural
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systems. In this point, there is a growing interest in
co-evolutionary  systems, where two populations
constantly interact and co-evolve in contrast with
traditional single population eveclutionary algorithms.
This co-evolution method is more similar to
biological evolution in nature than other evolutionary
algorithms.

Generally co-evolution algorithms can be classified
into two categories, which are predator-prey
co-evolution[1] and symbiotic co-evolution{2][3]. And
the authors derived a schema theorem associated
with symbiotic co-evolution[4], and a new fitness
measure in co-evolution is discussed in terms of
"Red Queen effect"[5].

In this paper, we propose a co-evolution method
generating optimal fuzzy controller, where the fitness
of a population changes according to the evolution
process of the other population. We presents how to
extract fuzzy rules and generate membership
functions at the same time using co-evolution
scheme. In general, it is very difficult to find fuzzy
rules by hand when the input-output variables are
going to increase. In this paper, therefore, we extract
fuzzy rules and partition membership functions by
co-evolving the shape of membership functions and
fuzzy rules.

The process of co-evolution is divided into two
parts. The first one generates fuzzy rules and the
other part determines proper shapes of membership
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functions. In the part of generating fuzzy rules, each
individual comprises a set of rules. There are sets of
rules in the population. Both each set of rules and
the shapes of membership functions are expressed by
genotype. The genetic operators such as selection,
crossover and mutation are applied to each
chromosome to generate new rule sets and
membership functions. To show the effectiveness of
the proposed method, we applied our method to
autonomous mobile robotic system, the objective of
which is finding a goal and avoiding static/moving
obstacles.

In the next section, co-evolution algorithms are
reviewed, and in section 3, we explain how to
construct  fuzzy logic controller(FLC) using co-
evolution algorithms. Simulation conditions and some
results are described in section 4, and finally
conclusions are followed.

2. Co-Evolution Algorithm

Recently evolutionary algorithms, including genetic
algorithms(GAs), evolutionary strategies(ES), evolution
-ary programming(EP), genetic programming (GP),
has been widely studied as a new approach to
artificial life. All of these typically work with a
single population of solution candidates scattered on
the static landscape fixed by the designer. But in
nature, various feedback mechanisms between the
species undergoing selection provide a strong driving
force toward complexity. And natural evolution
works on the fitness landscapes that changes over
the evolutionary time. From this point of view,
co-evolution algorithms have much attractions in
intelligent systems.

Generally co-evolution algorithms can be classified
into two categories, which are predator-prey
co-evolution and symbiotic co-evolution.

2.1 Predator-Prey Co-Evolution

Predator-prey relation is the most well-known
example of natural co-evolution. As  future
generations of predators develop better attacking

strategies, there is a strong evolutionary pressure for
prey to defend themselves better. In such arms races,
success on one side is felt by the other side as
failure to which one must respond in order to
maintain one's chances of survival. This, in turn,
calls for a reaction of the other side. This process of
co-volution can result in a stepwise increase in
complexity of both predator and prey[1]. Hillis[3]
proposed this concept with a problem of finding
minimal sorting network for a given number of data.
And co-evolution between neural networks and
training data was proposed in the concept of
predator and prey[6].

And fitness measure in co-evolution is studied in
terms of dynamic fitness landscape. L. van Valen, a
biologist, has suggested that the 'Red Queen effect
arising from co-evolutionary arms races has been a
prime source of evolutionary innovations and
adaptations[5]. This means that the fitness of one
species changes depending on the other species's.

2.2 Symbiotic Co-Evolution

Symbiosis is the phenomenon in which organism
of different species live together in close association,
resulting in a raised level of fitness for one or more
of the organisms. In contrast of predator-prey, this
symbiosis has cooperative or positive aspects between
different species.

Paredis[2] proposed a symbiotic co-evolution in
terms of SYMBIOT, which uses two co-evolving

populations. One population contains permutations
(orderings), the other one consists of solution
candidates to the problem to be solved. A

permutation is represented as a vector that describes
a reordering of solution genes. And another approach
to symbiotic co-evolution is host-parasite relation.
Just as do other co-evolutionary algorithms, two
co-evolving populations are used. One is called host
population which consists of the candidates of
solution, the other contains schema of the solution
space. This idea is based on the schema theorem
and building block hypothesis. The schema theorem
is that short, low-order, above-average schemata
receive exponentially increasing trials in subsequent
generations of a genetic algorithm[8].

The individual of host-population is parasitized by
a schema in parasite population. By this process,
useful schema generates much more instances in host
population at the next generation. We have showed
mathematically the effectiveness of host-parasite
co-evolution by the schema theorem associated with
host-parasite co-evolution[4].

3. Co-Evolutionary Construction of FLC

Basically fuzzy logic controller is composed of
fuzzifier, inference engine, rule base, and defuzzifier.
There are three types of fuzzy reasoning, the first is
Mamdani's minimum fuzzy implication rule, the
second is Tsukamoto's method with linguistic terms
as monotonic membership functions and the third is
that the consequent of a rule is a function of input
linguistic variables. We use the Mamdani's fuzzy
implication rule, max-min compositional rule of
inference. A rule is expressed qualitatively and
linguistically by fuzzy IF-THEN rules. If there are m
input variables and » fuzzy rules, then general fuzzy
production rule is
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R, o IF x;is Ay ,x SAp . , %, 1S A
THEN vy is B, (H
where A, is a linguistic term associated input
variable x,, and B; is a linguistic term of output y.
Therefore reasoning value y is as follows:

n
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And using the center of area defuzzification

method, the final inferred consequent y0 is given by
. [ B -y ay
y' = .

f B(y) dy

A rule base is typically acquired via expert's
knowledge. But it is very difficult to find fuzzy
rules by hand when the input-output variables are
going to increase. It is even impassible when the
complex and dynamic environment is considered.
And the proper fuzzy partitioning of input and
output spaces plays an essential role in achieving a
successful fuzzy logic inference engine design. But
unfortunately, it is not deterministic and there is no
unique solution.

Therefore, automatically generation of an optimal
fuzzy rule base and proper fuzzy partitioning is
considered as important and a lot of approaches
were proposed. Especially there has been a growing
interest in genetic based machine learning(GBML)
system, in other words classifier system. There are
two competing approaches to GBML[7]. One is
called Michigan approach, which uses a single set of
production rules or classifiers. So each individual
rule has a strength which indicates the utility of the
rules to the goal of the system. The other is called
Pitt approach, the individual of which consists of a
set of rules[8][9].

This paper presents a new approach to automatic
generation of FLC based on the concept of
co-evolution algorithms. Our approach has two
parallel evolution processes which are rule base
population and membership function(MF) population.
The overview of our approach is illustrated in Fig.1.

3)

— Rule PopulationT — MF Population —
il | | |24
Rule m C M

R ——— 0
Evolution

Fig. 1 A block diagram of co-evolution

To apply evolutionary algorithms to any problem,
first the solution spaces should be represented by a
chromosome. For our case, the encoding methods
and genetic operators are explained in the following
sub-sections.

3.1 Rule Base Population

The individual of rule base population consists of
a set of rules, so there are sets of rules in the rule
population. And a set of rules is made up of ten

different rules. If membership functions are
partitioned into five terms and there are »n
preconditions, then the maximum number of

IF-THEN fuzzy rules is 5". This means that the
input space is divided into 5". Therefore, unless we
use all of the rules, null set problems occur when
the given rule base cannot cover the current input
states. So we use a don't-care symbol in addition to
linguistic terms for a rule chromosome. This don't-
care symbol makes the preconditions so inclusive
that a small number of rules can cover the whole
input space. An example of encoding scheme for
several given rules is shown in Fig. 2.

Rule Base Rule Population
RI IF x1is NL, x2is PS,[] R1 - Rn
anqx“ISZE'T,HEN X1 x2 23 x4 vl \v\l
ylisPSandy2isNS Llps] < Jzelpsns” |- [+ [pLzeles]p]ze]
R2
IEEENEEEEEEN

pL]
:

Rn IF x2isPL x31is ZE,
and x4 15 PS , THEN
ylis PL and y2is ZE

"

PL . Positive Large, PS . Positive Small, ZE : Zcro.
NS Negative Small. NL . Negative Large * . Don’t-Carc

Fig. 2 An Example of fuzzy rules encoding scheme

In order to ensure the character preservingness,
we use the (u+ A)ES selection method and a
mutation operator only as genetic operators. This
selection method is elitist and therefore guarantees a
monotonically improving performance.

3.2 Membership Function Population

As shown in Fig. 3, we use the normalized
membership function partitioned with five terms. And
the shape of each term is triangular except the two
marginal terms. To find the optimal partitions we
use the Genetic Algorithms(GAs) proposed by J.
Holland in 1975. For our case, the encoding method
is illustrated in Fig. 3. The triangular membership
function's shape is determined by the three points
that are a center point and left/right width points.
We assume that the NL and PL terms have fixed
center points and the other three center points could
be placed any position from -1 to 1 and all the
left/right width of each terms could be from 0 to the
maximum value from its center point to the margin.
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NL : Negative Large,

ZE . Zero,

PL : Positive Large
Fig. 3 Membership function and encoding scheme

NS : Negative Smal
PS : Positive Small

For a wvariable the chromosome is consist of
(number of terms - 1)X3 bits real-valued string,
where the first 4 bits represent the width proportion
between the neighbor center points and the last 8
bits represent the width ratio of each term's left and
right margin from its center point. For example, ws
representing NS term's right width ratio is current
right  width(wds) over its possible maximum
width(2-C,,1). If there are N terms, N, input variables,
and N, output variables, then the whole length of
one chromosome becomes 3 X (N-1)x (N+N,) bits[10].

This encoding method guarantees the completeness,
soundness, and non-redundancy between the solution
and the genotype spaces. And fitness proportionate
reproduction method and as genetic operators
crossover and mutation are used.

4. Path planning of AMR

We verify the effectiveness of the proposed
algorithm by applying it to optimal path planning of
autonomous mobile robot. The objective of this
problem is to find a optimal path when static and
moving obstacles exist. For the moving obstacle we
assumed that there are two robots with the same
FLC at the counterpart coner. Each robot's goal
position is set to the other robot's starting point and
perceives the other robot as a obstacle. A robot has
three sensors(S0,S1,S2) covering +£15° to detect the
distance to a obstacle. And the direction of its goal
(@) is given, so there are four input variables. For
the outputs, FLC gives the directional changes(¢)
and speed(v) of AMR. The  simulation
environmental conditions are set as follow:

+ Working area : 1500 X 1500mm
+ Robot Size : radius 25mm

+ Number of robots : 2 units

» Maximum speed : 30mm/step

+ Sensing Radius : 200mm
+ Maximum steering angle : 90°/step

And the input/output variables' ranges are
restricted as shown in table 1. Fig. 4 shows the
AMR's sensor configuration and situations of
detecting an obstacle.

Table 1. Range of input/output variables

INPUT OUTPUT
o SO S1 S2 @ i}
-180° | 0~20010~200|{0~2001|-90°~ | 0~30
~180°| mm mm mm 90° mm
Goal
Direction
Obstacle
SO
S1 b 52 Sensing
Radius

Fig. 4 Sensor Configuration

And the raw fitness measure is formulated by,

D Tmin

, Ny N,
fitewy=(1="F") " M)

Ny €

where 7' is consuming time, N, is the number of
null set, Ty is minimum time required to reach
the goal, and Ny is maximum number of null set.
The fitness functions of membership function and
rule base are set by,

fithe =% 3 ity )
fithy= L3 3 it ©

where N is the total number of MF individuals,
fityyr is j-th MF individual's fitness, M is the total

number of rule base individuals, and fits is i-th

rule base individual's fitness.

In our case, the number of rule and membership
function populations is set for 50. And the mutation
probability of rule is 0.2, the crossover and mutation
probability of membership function are set for 0.5
and 0.02, respectively.

Fig. 5 shows the resulting fitness changes versus
generations. And Fig. 6 shows the membership
functions obtained after 400 generations
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Fig. 5 Fitness curves
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Fig. 6 Evolved membership functions

And the obtained rules after 400 generations are
stated in table 2. This rule base can cover all
possible states and means that "Turn to the goal
direction, and if an obstacle exist in the direction of
moving then turn left or right although opposite
direction to the goal position.

Table 2. Rule base after 400 generations

(b) Input variable S0

Ions 042"10305|0195|03 Imzalomlm ]092!0727]0897]0225 ]

=

(¢) Input variable S/

[ o.os]o52[009](]34[031]04]0979[0.342]0953[0,21210235]0.83 ]

\\\

"\,

0 005 0.57 066 1

Rl . IF 81 is VI, THEN ¢ is NL and o is ME.

R2 : [F 80 is VS, SI is MS, and S2 is ME, THEN ¢ s
PS and v is 1S

R3 : IF 50 is ME, and S2 is VI, THEN ¢ is ZE and
v is VS,

R4 . IF ¢ is NS 81 is VL, and S2 is ML, THEN ¢ s
PS and v is VS

R5 : [F 50 is VL, and SI is VS, THEN ¢ is PL and
v is VL.

R6 : IF S! is ME, THEN ¢ is NL and o is ML.

R7 : IF 80 is ME, S§1 is ME, and 52 is ML, THEN ¢
is ZF and » is VL.

R8 : IF @ is NL, SO is ML, and 52 is ML THEN ¢
is NS and p is VS.

R9 : IF 80 is VS, and S2 is ME, THEN ¢ is ZF and
v is ME.

RI0O: IF @ is PS. SO is ME, and S1 is ME THEN ¢
is PS and v is MS.

(d) Input variable S2

where NL is Negative Large, NS is Negative Small,
ZE is Zero, PS is Positive Small, PL is Positive
Large, and VS represents Very Small, MS is
Medium Small, ME is MEdium, ML is Medium
Large, and VL is Very Large.
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Fig. 7 shows the dynamic fitness landscapes, according to the other's evolution process. This
where figure (a) illustrates elite rule's fitness changes evolution model is considered as more analogous to
according to the changes of membership functions’ natural system.

generations, and figure (b) illustrates fixed elite

However, the relation between fitness functions

membership function's fitness changes versus the  should be extended more generally when more than
changes of rules' generation. one population evolve. That remains the future work.

Rule’s fitness

1.00— Elite rule's fitness
of 400 generation

0.75—

0.50—

— : Y T Ty P I
100 200 300 400
Generation

(a) Fitness landscape of 400 generation elite rule 2.

MF’s fitness

1.00~  Elite membership function's fitness
of 400 generation

0.75f

0.50

|

400
Generatoin

(b) Fitness landscape of 400 generation elite MF
Fig. 7 Dynamic fitness landscapes
Using above rule base and membership functions 7

both  AMRs find their goal positions in relatively
short time and avoid obstacles successfully

8.
5. Conclusions
. 9.
This paper has proposed a new approach to
automatically fuzzy logic controller generation using
co-evolution concept. By applying the proposed
method to a optimal path planning problem where 10

moving obstacle exit, the effectiveness of the
proposed method was shown. And the concept of
co-evolution is reviewed on the points of artificial
life computation model.

Two main process in co-evolution are optimal
rule base generation and proper fuzzy membership
function  partitioning. Each  population evolves
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