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Abstract: The majority of real-world problems encountered by engineers involve simultane-
ous optimization of competing objectives. In this case instead of single optima, there is a set
of alternative trade-offs, generally known as Pareto-optimal solutions. The use of evolutionary
algorithms Pareto GA, which was first introduced by Goldberg in 1989, has now become a
sort of standard in solving Multiobjective Optimization Problems (MOPs). Though this ap-
proach was further developed leading to numerous applications, these applications are based
on Pareto ranking and employ the use of the fitness sharing function to maintain diversity.
Another scheme for solving MOPs has been presented by J. Nash to solve MOPs originated
from Game Theory and Economics. Sefrioui introduced the Nash Genetic Algorithm in 1998.
This approach combines genetic algorithms with Nash’s idea. Another central achievement of
Game Theory is the introduction of an Evolutionary Stable Strategy, introduced by Maynard
Smith in 1982. In this paper, we will try to find ESS as a solution of MOPs using our game
model based co-evolutionary algorithm. First, we will investigate the validity of our co-
evolutionary approach to solve MOPs. That is, we will demonstrate how the evolutionary
game can be embodied using co-evolutionary algorithms and also confirm whether it can
reach the optimal equilibrium point of a MOP. Second, we will evaluate the effectiveness of
our approach, comparing it with other methods through rigorous experiments on several
MOPs.
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1. INTRODUCTION

Most of the real-world problems encountered by
engineers involve simultaneous optimization of
several competitive objective functions [1]. The
traditional optimization problems attempt to simul-
taneously minimize cost and maximize fiscal return.
However, in these and most other cases, it is unlikely
that each objective would be optimized by the same
parameter choices. Hence, some trade-off between the
criteria is needed to ensure a satisfactory design.

In searching for solutions to these problems, we
find that there is no single optimal solution but rather
a set of solutions. These solutions are optimal in the
sense that no other solutions in the search space are
superior to them when all objectives are considered.
They are generally known as Pareto-optimal solutions
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[2]. Though numerous approaches for solving MOPs
are in existence, we bring evolutionary algorithms into
focus.

This chapter introduces previously established
evolutionary approaches. The second chapter explains
two optimization approaches based on Game Theory
to solve MOPs. The first of these is a Nash genetic
algorithm (Nash GA) proposed by Sefrioui and the
second is game model based -co-evolutionary
algorithm proposed by us. In the final chapter, we
compare optimized solutions using the game model
based co-evolutionary algorithm with other algorithms
through several test problems.

1.1. Evolutionary approaches: Non-Pareto approaches
The first exploration for treating objective functions
separately using evolutionary algorithms was launch-
ed by Schaffer. In his 1984 dissertation [3], and later
in [4], Schaffer proposed the Vector Evaluated Genetic
Algorithm (VEGA) for finding a solution set to solve
MOPs. He created VEGA to find and maintain multi-
ple classification rules in a set-covering problem.
VEGA attempted to achieve this goal by selecting a
fraction of the next generation using one of each of
the attributes (e.g., cost, reliability) [5]. Other ap-
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proaches that search populations for multiple nondo-
minated solutions include those of Fourman [6], Kur-
sawe [7], and Hajela and Lin [8]. However, as none of
them makes direct use of the actual definition of
Pareto-optimality, different nondominated individuals
are generally assigned different fitness values [9].

1.2. Evolutionary approaches: Pareto-based approaches

Goldberg first proposed Pareto-based fitness
assignment approaches known as Pareto GA. The idea
of this algorithm is to assign high probability to all
non-dominated individuals in the population [10].
This method consists of assigning rank 1 to the non-
dominated individuals and removing them from
contention, then finding a new set of non-dominated
individuals, ranked 2, and so forth. He named this
ranking as Pareto ranking.

Fonseca and Fleming have proposed another
different scheme, whereby an individual’s rank
corresponds to the number of individuals in the
current population by which it is dominated [11].
Therefore, non-dominated individuals are assigned the
same rank, while dominated ones are penalized
according to the population density of the
corresponding region of the trade-off surface [12].
Hom and Nafpliotis also proposed tournament
selection based on Pareto dominance [13].

Moreover, distributive search is very important in
Pareto GA. The goal of Pareto GA is to search all
Pareto optimal solution sets distributed along the
Pareto frontier. To achieve this subject Goldberg and
Richardson introduced the concept of fitness sharing
in their paper [14]. It is within the range of possibility
to search distributive solutions through the fitness
sharing that permits highly fitted candidates to share
fitness with others in their surroundings [5].

With the introduction of non-dominance Pareto-
ranking and fitness sharing, Pareto GAs have now
become a sort of standard in the sense that the Pareto
GAs provide a very efficient way to find a wide range
of solutions to a given problem. Although this
approach proposed by Goldberg was. further
developed in [15], and led to many applications [1,
16,17], all of these approaches are based on the
concept of Pareto ranking and use either sharing or
mating restrictions to ensure diversity. Regardless of
how multiobjective optimization schemes based on
Pareto optimality were developed, we introduce two
different approaches to solve MOPs [18] based on
Game Theory.

2. EVOLUTIONARY GAME THEORETICAL
APPROACHES

Since mathematical basis founded by Von
Neumann in the late 1920s’, Game Theory has

contributed to the study for solving MOPs that are
indulged in the sphere of mathematics and economics.
Game Theory introduces the notion of games and
players associated to an optimization problem. In the
case of a multiobjective design through Game Theory,
each player involved has his own criterion. During the
game, namely Nash Game, players try to make
improvements until the system reaches the state of
equilibrium.

In this chapter, we introduce two searching
algorithms for finding an optimized equilibriumn
solution of MOPs through the evolutionary game. The
first algorithm launched from the idea regarding the
solution of a non-cooperative game was introduced
early in the 1950’s by J. F. Nash. This approach has
brought in the concept of ‘Game Player’ for solving
MOPs involved in Game Theory and Economics [18].
The second algorithm is a co-evolutionary algorithm
using the game model, which is a newly proposed
approach in this paper. This approach attempts to
search the Evolutionary Stable Strategy (ESS) of
MOPs combining the co-evolutionary algorithm with
the evolutionary game theory.

2.1. Nash Genetic Algorithm (Nash GA)

The idea of Nash GA is to bring together genetic
algorithms and Nash strategy in order to cause the
genetic algorithm to build the Nash Equilibrium. In
the following, we present how such merging can be
achieved with 2 players trying to optimize 2 different
objectives.

Let s=XY be the string representing the potential
solution for a dual objective optimization problem.
Then X denotes the subset of variables handled by
Player 1 and optimized along criterion 1. Similarly Y
denotes the subset of variables handled by Player 2
and optimized along criterion 2, Thus, as advocated
by Nash theory, Player 1 optimizes s with respect to
the first criterion by modifying X while Y is fixed
by Player 2. Symmetrically, Player 2 optimizes s
with respect to the second criterion by modifying ¥,
while X is fixed by Player 1.

The next step consists of creating two different
populations, one for each player. Player 1’s
optimization task is performed by Population 1
whereas Player 2’s optimization task is performed by
Population 2. Let X,; be the best value found by
Player 1 at generation k—1 and Y, be the best
value found by Player 2 at generation k—1. At
generation k, Player 1 optimizes X while using
Yeoi in  order

to evaluate s (in this case,

s=X,Y, ). Simultaneously, Player 2 optimizes i
while using X;_; in order to evaluate § (in this

case, =X, (Y, ). After the optimization process,
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Optimization of X, Y

Player 1 = Pop X Player2=Pop Y

Initialization of Pop X and Pop Y

Generation k-1

Optimizes X, , Optimizes Y, |

Y, ., 1s fixed by Player 2 X\, is fixed by Player 1

Send X, ;

Generation k
Optimizes X, Optimizes Y,

Y, is fixed by Player 2 X, is fixed by Player 1

Generation k+1

Optimizes X, Optimizes Y,

Y, is fixed by Player 2 X, is fixed by Player 1

Fig. 1. Block diagram of Nash Genetic Algorithm.

Player | sends the best value Xi to Player 2 who
will use it at generation k+1. Similarly, Player 2

sends the best value Y; to Player 1 who will use it at
generation & +1. Nash equilibrium is reached when
neither Player 1 nor Player 2 can further improve their
criteria [18].

For this algorithm Sefrioui also uses distance-
dependent mutation, which is a technique evolved to
maintain diversity in small populations. Instead of a
fixed mutation rate, each offspring has its mutation
rate computed after each mating. This mutation rate
depends on the distance between the two parents [19].

2.2. Evolutionary Stable Strategy (ESS)

The primary contribution of evolutionary game
theory (EGT) is the concept of the Evolutionary
Stable Strategy (ESS). ESS was originally proposed
by a world renowned biologist named Maynard Smith
based on EGT and defined as an unchangeable
strategy by other strategies [20]. Unchangeable
strategy means that no matter how outstanding a
particular strategy may be, it cannot maintain
predominance  over other inferior strategies
permanently. In the context of an actual ecosystem,
more evolutionary stable species can be reserved than
superior species, in other words an evolution chooses
the strategy that not only executes progressive
direction but also moves the equilibrium state.

No. Chromosome Yitness No. Chromosome Fimess
1. 1801101 57 - 1. 0110011 76
2. 0111011 58 2. 1001101 s5
3. 1010100 79 3.  9J10011% 93
4. 1000100 81 4. 0011013 34
5. 0101011 27 5. 1161010 39
6. 1011101 79 ‘6. 1010111 48
7. 0116010 53 7. 61310101 98
8. 1101001 21 ‘8. 1161106 73
9. 0808100 94 9. 6011018 34
10. 0100011 27 10. 0100101 54
i. 0110100 (54 i 1011019 81
N, 0116010 53 M. 0180113 93

Fig. 2. Population of co-evolutionary algorithm for
game.

The ESS is a refinement of Nash equilibrium that
dispenses with the traditional assumption of agent
rationality. Instead, Maynard Smith shows that game-
theoretic equilibriums can be achieved through the
process of Darwinian selection [21]. Nevertheless, the
ESS is defined as a static concept, and since its
introduction many other stability concepts have been
proposed [22], including those that are more properly
rooted in dynamical systems theory [23]. The ESS
corresponds to a dynamical attractor [24].

For the game modeled in this paper, the
evolutionary game is embodied by the co-evolutionary
algorithm. Each population corresponds to player and
fitness of individuals in the population is evaluated as
a reward of the game. This reward results from fitness
of an opponent player in another population.

2.3. Game model based co-evolutionary algorithm

In this section, the co-evolutionary algorithm
designed for searching ESS of MOP is explained.
Throughout the game, players for each objective
function try to optimize their own objectives and all
individuals in a population set are rewarded. The
reward value is determined by the percentage of
victories during the game.

To design the co-evolutionary algorithm based on
Game Theory, we first established a game player with
randomly generated populations. All individuals in
each population are rewarded ‘fitness’ that will be
used during the selection procedure. During the game
each individual in the first population plays the game
with others in the remaining populations and is paid
the fitness calculated from (1), (2) and (3). Other
individuals in the remaining populations execute the
game in the same manner by turns. Using the fitness,
the next generation individuals are produced in each
population independently through crossover and
mutation.

In Fig. 2, ‘No.” signifies the number of individuals
within each population. We use binary chromosome
and normalized fitness. The example of MOPs having
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Fig. 3. Objective function graph for calculating gain
value.

two variables is given to help and this is the
minimization problem.

Step 1: Two populations are randomly generated
like in Fig. 2.

Step 2: The first individual in the primary popu-
lation plays with each individual in the other
population and is evaluated for level of fitness.

Throughout the game by turns, the fitness of the
opponent individual in the second population is
calculated in the same manner.

Step 3: The process of Step 2 is executed for all
individuals of the first population one by one.

Step 4: The processes of Step 2 and Step 3 are
executed for all individuals of the second population
analogously.

M
FitneSS(x,-):ﬂ,+Zfa(y")—fa(xi)—,—ﬁ’(y”)_ﬁ’(xi)
n=1

MAX (x;,y,)
1)
. Lo (6) = (v )+ fo(x,) = f,(v))
F =4 . =t ’
itness(y;) = A+ Z}: MAX(y, %)
)
MAX(xi’yj):f;zimax(yj)_f;zimax(xi) (3)

+f‘b7max (yj) - ]Fbgmax (xi)

In (1) and (2), x; and Y; signify the individual
in the first population and the second population. The
JoO)), f.(x), Sy, and fp(x;) are the
values calculated when x=x; or ¥; for f,(x),
f,(x) from Fig. 3. And in (3), fu_max(X) and

/5 max(X) indicate the maximum values of f,(x),
f3(x) for the given variable.
Step S: Using Fitness(x;) and Fitness(y ;) deter -

mined from the previous procedures, each population
produces next generation individuals independently.

Step 6: Until ending condition is satisfied the
procedures from Step 2 to Step 5 are reiterated.

Keeping these ideas, by the comparison
experimental result of co-evolutionary approach with
Nash GA, we show that these approaches can be
regarded as appropriate and the stable equilibrium
points of MOPs can be found. To achieve these goals
we choose several MOPs. One out of these is the
multiobjective function proposed by Sefrioui in his
paper to evaluate Nash GA and another is the function
proposed by Schaffer, which is generally used in
solving MOPs by genetic algorithms [10]. Various
other test problems are also adopted.

In this paper, we introduced several approaches to
solving MOPs. In the introduction, established
optimization algorithms based on the concept of
Pareto optimal set are introduced. Contrary to these
algorithms, in this chapter, we introduce theoretical
backgrounds of Nash Genetic Algorithm (Nash GA)
and Evolutionary Stable Strategy (ESS), which are
based on EGT. Moreover, ESS is the basis of the co-
evolutionary algorithm using the game model as
newly proposed in this paper. But generally ESS, the
equilibrium solution of the co-evolutionary game
model, exists more than once so that we apply elitism
to search the most optimized equilibrium solution of
MOPs. In the next chapter, from the experimental
results we confirm that co-evolutionary algorithm
based on EGT can search the optimal equilibrium
solutions of MOPs,

3. TEST PROBLEMS AND EVALUATION

While various evolutionary approaches (and
variations of them) to solve MOPs were successfully
applied to these problems, in recent years some
researchers have investigated particular topics of
evolutionary multiobjective search. In spite of this
variety of approaches, there is a lack of studies that
compare the performance and the singular aspects of
these approaches. In this chapter, we used several
problems. The problems considered here are
Sefrioui’s problem used in his paper, Schaffer’s
problem, and Zitzler’s test MOPs, which are proposed
for a systematic comparison of several multiobjective
EAs in his paper [25].

3.1. Optimization of problem used in Sefrioui’s paper

As the first experiment, the multiobjective problem
to minimize two objective functions is used and this
problem is introduced in Sefrioui’s paper to evaluate
Nash GA.

Ay =(x-D +(x-y)°, (4)

frxy)=(r-3)7+(x~-y)°, (5)
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Fig. 5. The change of f, /2 values for every gen-
eration by Co-evolutionary algorithm.

Table 1. The simulated solutions of Sefrioui’s multi-
objective function found by Nash GA and
Game model based co-evolutionary algori-

thm.
X, Y, Fy
Nash GA 1.6673 2.3297 0.8840
X, Y, F,
1.6697 2.3393 0.8849
Game model X, 4 £
based 1.3033 0.7723 0.3740
co-evolutionary X, Y, F,
algorithm 50071 25570 | 02114

where constraint is —5<x,y <5. To solve the MOPs

shown above using genetic algorithms, we allotted
two populations to each objective function for
searching solutions.

Table 1 presents the most optimized solutions for
this problem by using Nash GA and the co-
evolutionary algorithm. Hence, X,, Y|, F, are the

optimized values by Population 1 and X,, Y,, F,

are the optimized values by Population 2. In this
experiment the optimized values by Sefrioui using
Nash GA are the identical values found in Sefrioui’s
paper. This also presents Nash equilibrium point.

Fig. 4 illustrates the change of /i, /> values for

20
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Fig. 6. The change of f;, f, values for every gen-

eration by Nash GA.
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Fig. 7. The change of f, /> values for every gen-
eration by Co-evolutionary algorithm.

every generation by Nash GA and Fig. 5 displays the

change of fi, /2 values using our game model
based co-evolutionary algorithm. From these results,
we can determine that the game model based co-
evolutionary algorithm search more optimized
solutions than the solutions found by Nash GA and
these solutions also exist in the boundary of the Pareto
frontier.

3.2. Optimization of Schaffer’s MOP

The second experiment is to solve a double
objective minimization problem, proposed by Schaffer.
This problem is composed of two functions having the
second order.

fay)=x-D+(-17°, (6)

) =(x-9"+(-4)°, (7)

where —5<x,y<5 is the constraint. Like as in the

previous experiment, we allotted two populations for
each objective function.

The experimental results searched by applying each
algorithm to this problem are presented in Table 2, Fig.
6 and 7. As seen in these results, our game model
based co-evolutionary algorithms have found more
optimized solutions for this problem. Moreover this
point exists in the Pareto optimal front, just as in the
previous experiment.

From the previously executed experimental results we
confirmed that it is regarded as appropriate to search
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Table 2. The simulated solutions of Schaffer’s mul-
tiobjective function found by Nash GA and
Game model based co-evolutionary algo-

rithm.

X, ¢ F
Nash GA 0.9933 4.0004 9.0023

as X, Y, F,
0.9933 4.0004 9.0403

Game model X, i i
based 2.3499 2.6825 4.6531

co-evolutionary X, Y, F,
algorithm 24994 | 24641 | 4.6107

optimal equilibrium strategy by applying the co-
evolutionary algorithm combined EGT model and this
can be regarded as the solutions of MOPs. In particu-
lar, we found that the co-evolutionary algorithm based
on the EGT model can search more optimized solu-
tions in spite of its simplicity.

3.3. Test functions proposed in Zitzler’s paper [1]

In the previous chapter, we introduced variousestab-
lished evolutionary algorithms for solving multiobjec-
tive problems. In spite of this variety, there is a lack of
studies that compare the performance and different
aspects of these approaches. Among these studies we
introduce several researches. On the theoretical side,
Fonseca and Fleming discussed the influence of dif-
ferent fitness assignment strategies on the selection
process [12]. On the practical side, Zitzler and Thiele
used a NP-hard 0/1 knapsack problem to compare
several multiobjective EAs [26,27]. In these papers,
Zitzler provides a systematic comparison of multiob-
jective EAs, including a random search strategy as
well as a single-objective EA using objective aggrega-
tion. The basis of this empirical study is formed by a
set of well-defined, domain-independent test functions
that allow the investigation of independent problem
features. We thereby draw upon results presented in
Deb, where problem features that may make conver-
gence of EAs to the Pareto-optimal front difficult are
identified and, furthermore, methods of constructing
appropriate test functions are suggested [28]. The
functions considered here cover the range of convexity,
nonconvexity and discrete Pareto fronts. Deb has
identified several features that may cause difficulties
for multiobjective EAs in converging to the Pareto-
optimal front and maintaining diversity within the
population [29]. Each of the test functions defined
below is structured in the same manner and consists

itself of three functions f,, £, h.

Minimize #(x)=(f,(x,), f>(x5))
Subject to

fz(x):g(x2,~--,xn)-h(fl(xl),g(xz,---,x")), (8)

where x=(x,---,x,). The function f; is a function
of the first decision variable only, £ is a function of
the remaining m —1 variables, and the parameters of
h are the function values of fi; and &. The test
functions differ in these three functions as well as in
the number of variables m and in the values the
variables may take [28].

The test function 7} has a convex Pareto-optimal

front
fix)=x,

z”
X;
i=2 !

2(x5,5%x,)=1+9-
- n-1 »

h(fl,g)=l—\/Z
g,

where ;=30,and x, €[0,1].

The test function 7> has a nonconvex Pareto-
optimal front

Silx)=x,

n
Zi:Z Yi

— ’

glxy, o, x,)=1+9-

h(fl,g)=1—[ﬁj
b4 ,

where n=30,and x, [0, 1].

The test function I3 represents the discreteness
feature; its Pareto-optimal front consists of several
noncontiguous convex parts:

ﬁ(xl)le’

n
Z:‘:Z i

n-1 >

h(fl,g):l—\/z—[ﬁj-sin(ng’l)
g g )

where n=30,and x, [0, 1].

g(xy,,x,)=1+9-

Figs. 9, 11, and 13 show the simulated solution of
each test function using our game model based co-
evolutionary algorithm. Figs. 8, 10, and 12 are cited
pictures from Zitzler’s paper to compare with the
results of our algorithm. These pictures are a searched
solution of each test function and shown in criterion

space ( /i — f2) [25].

In these cited pictures,

® RAND: A random search algorithm.

¢ FFGA: Fonseca and Fleming’s multiobjecti-
ve EA.

® NPGA: The Niched Pareto Genetic Algorithm.
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Fig. 8. The Pareto front of 7, searched by other evo-
lutionary algorithms (Cited from [1]).

Fig. 9. The optimized solution of T, searched by
the proposed co-evolutionary algorithm.
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Fig. 10. The Pareto front of T, searched by other
evolutionary algorithms (Cited from [17).

o HLGA: Hajela and Lin’s weighted-sum based ap-
proach.

e VEGA: The Vector Evaluated Genetic Algorithm.

® NSGA: The Nondominated Sorting Genetic Al-
gorithm.

oSOEA: A single-objective evolutionary algorithm

71

Fig. 11. The optimized solution of 7, searched by
the proposed co-evolutionary algorithm.
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Fig. 12. The Pareto front of T; searched by other
evolutionary algorithms (Cited from [1]).

N

2l
<]
R

Fig. 13. The optimized solution of 7y searched by
the proposed co-evolutionary algorithm.

using weighted-sum aggregation.
e SPEA: The Strength Pareto Evolutionary Algo-
rithm.

In the pictures of simulated result by our proposed
algorithm, black circles show finally found optimized
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solutions using our game model based co-evolutionary
algorithm. Used parameters are as follows. The
number of generation is 500. Population size is 100.
One-point crossover rate is 0.8. Mutation rate is 0.01.
These are the same parameter values used in Zitzler's
experiment. From these results, we confirm that
optimized solutions using game model based co-
evolutionary algorithm are all existent in Pareto
optimal front and this algorithm can search relatively
more optimized solutions than those of the other eight
evolutionary algorithms.

4. CONCLUSIONS

In this paper, we proposed a novel game model
based co-evolutionary scheme to solve MOPs, which
is different from conventional ones. In order to point
out the difference, we first surveyed the conventional
evolutionary algorithms that were proposed by others
to search for the solution set of a MOP. Second, we
showed the construction methodology combining the
game theory with the co-evolutionary algorithm
systematically. Finally, we investigated the per-
formance efficiency of the designed algorithm
rigorously. It was shown that the designed method not
only successfully reaches the equilibrium points of
MOPs but it also locates the superior optimal solution
set in comparison with other conventional evolu-
tionary algorithms. Especially in the case of Pareto
front solution set, the better solutions were obtained
by comparison with other approaches. Our method has
an advantage over the Nash GA method because it
uses a very simple genetic operator to evolve the
solution unlike the genetic operators used in Nash GA.
For instance, Nash GA uses a complex mutation
operator, which requires a heavy computation burden
to calculate the hamming distances of two individual
binary chromosomes involving encoding and
decoding of chromosomes.

Conclusively, our game model based co-
evolutionary scheme is simple, robust in finding the
optimal solution set, requires less computation, and it
can be an alternative method in solving MOPs.
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