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Evolutionary Design of a Fuzzy Logic Controller for Multi-Agent
Robotic Systems

ll-Kwon Jeong and Ju-Jang Lee-

Abstract : It is an interesting area in the field of artificial intelligence to find an analytic model of cooperative structure for multi-
agent system accomplishing a given task. Usually it is difficult to design controllers for multi-agent systems without a comprehensive

knowledge about the system. One of the way to overcome this limitation is to implement an evolutionary approach to design the
controllers. This paper introduces the use of a genetic algorithm to discover a fuzzy logic controller with rules that govern emergent
co-operative behavior. A new modified genetic algorithm is applied to automating the discovery of a fuzzy logic controller for multi-
agents solving a pursuit problem in a continuous world. Simulation results indicate that, given the complexity of the problem, an
evolutionary approach to find the fuzzy logic controller seems to be promising.

Keywords : multi-agent system, fuzzy logic controller, evolutionary algorithm

I Introduction

Studying computational models of co-operative structures
accomplishing a given task is an interesting area in the field of
artificial life. However, generally it is difficult to design such
models by analysis. As the problem size grows, it becomes
more difficult. In the field of self-leaming reactive systems it
is not even desirable to have a clear idea of a computational
model. Autonomous agents being adaptable implies an
minimally pre-programmed systems. The general aim is that
agents learn to accomplish tasks by interacting with the
environment and adapt future behavior on the basis of
feedback from present (or past) action[1].

Genetic algorithms are search methods based on natural
selection and genetics. GAs are used in various problems
including control problems nowadays. It has been empirically
proved that GAs are especially suitable for solving
combinatorial optimization problems[6].

In this paper, we use a genetic algorithm to evolve a team
consisting of mobile robots in order to accomplish a given task
while showing emergent cooperative behavior. The GA
constructs a fuzzy logic controller for the mobile robots. The
task considered in this paper is solving a pursuit game in
continuous world. The objective of each robot is to capture a
stading/moving prey in cooperation with the other robots to
satisfy a pre-specified capture condition while avoiding
collisions with them. To the author's knowledge, this is the
first attempt to deal with the pursuit problem in continuous
domain with mobile robots.

There have been several works related to the work dealt
here. They can be categorized into two groups. The first group
deals with the methods for evolving a team. Patel and
Maniezzo solved a soccer-playing agent problem using neural
networks to control agents, and genetic algorithms (GAs) to
train the neural networks[1]. Lund and Miglino also used a
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GA to evolve neural network controllers for real robots[2].
They solved a rather simple obstacle avoidance problem.
Recently, it has been shown that GAs are not suitable for
training neural networks, and most GA-based learning
algorithms for neural networks use hybridization of GAs and
another calculus-based algorithm (e.g. GA+Back Propagation)
or modified GA specially designed for performance improve-
ment[3].

Haynes and Sen presented several crossover mechanisms in
a genetic programming in order to reduce the time needed to
evolve a good team solving a pursuit problem[9]. Iba showed
the emergence of the cooperative behavior for the multiple
agents solving the pursuit problem by means of genetic
programming[10}. However, these two works were done in
discrete domain. Lohn and Reggia used GAs to discover
automata rules that govern self—replicéting processes, which
was also done in a grid world[7].

The second group of works concerns controlling group
behaviors of multi-agents such as gathering, lining, and
circulating. Fukuda generated.a group behavior for real small
mobile robots using reflex moVements[lZ]. Balch presented a
behavior-based approach to robot formation-keeping[14].
These works differ from ours in that they used a pre-designed
Strategy. )

Though not dealing with multiple agents, there are some
works dealing with robot's behavior evolved by using GA or
GP. Lee et. al applied a behavior-based approach to design the
controller of a mobile robot solving a box pushing problem by
using genetic programming[11]. They also developed a
method for co-evolving controllers and structures of a robot to
achive a obstacle avoidance task.

The continuous pursuit problem here is much more difficult
than the problems solved in the works mentioned above,
because it involves a moving obstacle avoidance problem and
the movement of a mobile robot is determined by the fuzzy
logic controller associated with it while a movement of a robot
can be directly assigned by rules in a discrete pursuit problem.

A new modified genetic algorithm (NMGA) is used to
discover a fuzzy logic controller that govern emergent co-
operative behavior in a continuous world. Though genetic
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programming can be successfully applied to evolving a fuzzy
logic controller, GA is used here because the problem we are
solving can be represented in a form of combinatorial
optimization problem and using GP requires some additional
steps to construct a fuzzy logic controller[8].

The paper is organized as follows. In section 2, a pursuit
model is described. In section 3, discovery of the fuzzy logic
controller using NMGA is described. Simulation results are
provided in section 4.

11. Pursuit model

A pursuit problem or predator-prey problem is a test bed in
distributed artificial intelligence (DAI) research to evaluate
techniques for developing cooperation strategies. The
objective of an agent (predator) is catching a prey in
cooperation with other agents. The problem domain is similar
to the effector automata (EA) model[7] except that the domain
in this paper is a continuous world. In the EA model, a cellular
space is defined where individual processing units (automata
or agents), operating in parallel, receive input from their local
neighborhood, and produce an output using a pre-defined rule.
Each cell is a location in space, and agents (automata) are
entities that can occupy cells. The output in a pursuit model is
an action command to effect, such as moving or turning speed.

Time is discretized in the pursuit model due to the sampling
interval, and space is an two-dimensional square of w
(width) x I (length). An agent is assumed to be a two-wheeled
mobile robot with radius 0.5. It can move to anywhere in the
space. FEach agent is represented by a symbol
T,,i=12,A ,n, indicating the ith agent, where » is the number

of agents. T, represents the prey. It is assumed that all agents
use identical rules, i.e. the homogeneous strategy.

Fig. 1 shows a pursuit model with two agents and a prey (in
the center). It is assumed that each agent can detect other
objects (agents and the prey). An agent can detect the
positions of other agents. The behavior of each agent is
governed by a fuzzy logic controller. It is the rule table that
should be designed by using a genetic algorithm in order to
complete the fuzzy logic controller.

The actions possible for the pursuit model are changing
velocity and angular velocity. In this paper, the velocity of an
agent is assumed to be a constant. Therefore the fuzzy logic
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Fig. 1. A pursuit model.

controller only determines the angular velocity of a robot.

We need a simulator for the pursuit model. The simulator
simulates the movements of agents and the prey according to
the fuzzy logic controller for a given time steps, and scores the
result. The simulation stops when the prey is captured or the
given time steps are over. When an action or movement of an
agent is outside the world the simulator disables the action. A
collision policy should be specified to address the possibility
of two or more agents attempting to occupy the same region.
Two example policies are mutual annihilation which results in
all agents being disabled to move, and the random winner
policy which randomly selects one agent to occupy the region
in question[7]. We use mutual annihilation policy here.

I11. Design of a fuzzy logic controller using a new
modified genetic algorithm
1. Problem description

Our objective is to investigate how relatively simple agents
can adaptively learn to solve a complex problem. Each agent
should learn simple behaviors which are collectively sufficient
to solve the problem. Agents have to decompose the problem
effectively but this decomposition should be an emergent
property of adaptive learning and not preprogrammed. It is an
important motivation of this work that a problem should be
solved with the minimal possible direction from the
programmer or the trainer. We apply a new modified genetic
algorithm to find a fuzzy logic controller (FLC) for agents
solving a continuous pursuit problem.

The predators (agents controlled by FLC) have to learn to
catch the prey. The motion of the prey is determined to run
away from the nearest predator in the opposite direction to
him with the pre-specified velocity when the predator is in the
threat region.

The task of the agents is to capture the prey in a limited
period while at the same time to satisfy the constraint in (2)
and (3) that each agent should catch the prey in an appropriate
direction. Fig. 2 show the regions in which each agent should
be placed to satisfy the constraint for the case of 2 and 3
agents. The prey is considered to be captured when the
following two conditions are satisfied.

distance(T;,T,) < 1.5, Vi )
—';ﬁ < (angle(T,,T,, Y—angle(T,,T, ) < ;—”, forie[l,n] (2)
n n

M

where m;(€[l,n]) are indices such that (angle(T,.T,, ) <

Fig. 2. Capture condition.
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angle(T,,T, ), i=12,A n~1 and m,,, = m, . distance() returns

the distance between two agents and angle(T,,T)) returns the
relative angle of T, with respect to the heading angle of T,

Success of the task depends on agents learning to co-operate
in order to catch the prey. Fach agent behaves independently
of the other, and only knows about the existence and relative
position of other agents and the prey as described in the
previous section. So there is no direct communication between
agents, and their knowledge of the aims of other agents is also
indirect. Hence each agent interacts with a highly dynamic
environment. Learning (modifying the rule table of FLC) takes
place through feedback gained from actions in the
environment.

In this paper, the pursuit model has the size of 10x10, that
is, w = 10 and / = 10. Initial positions and orientations of the
agents and the prey are shown in Fig. 3 for the case of 2 agents
and 3 agents. The threat region of the prey is defined as a
circle centered at the prey with a radius of 3. The translational
velocities for agent and prey are set to 3/sec and I/sec,
respectively.

We use a zero-order Sugeno fuzzy model for FL.C to reduce
the computation time[15]. Every linguistic variable has two
fuzzy sets. Fig. 4 and Fig. 5 show the membership functions of
the fuzzy set for 7, and &, respectively. An entry of a rule table
is a condition-action rule of the form:

If6 isdandr,isBandK and v, is D and 6,is E
andr,is Fand 6,is G - action  (3)

where @, is the heading angle of the robot which is being
controlled. r, and €, i=23A ,n, represent the distance
between 7 and T}, and relative angle of 7, with respect to the
heading angle of T), respectively. 4, B, and /4 are fuzzy sets

corresponding to each linguistic variables.
The position of each agent is updated using the following

approximations.
A x = (vcos O)AT 4
Ay =(vsin@)AT &)
AO = wAT 6)

where v and w are the robots' translational and angular
velocities, respectively, and AT is the sampling period, which
is set to 0.05 sec in the simulation. We have simulated the
following two situations with 2 and 3 agents.

Case I: the>prey is fixed during the simulation.

Case 2: the prey is moving to run away from the predators.

2. Methodology

We used a new modified genetic algorithm (NMGA) which
orginated from MGA[4]. The NMGA is described briefly here.
The NMGA consists of the fitness modification and the
modified mutation probability. The fitness value for a certain
string is determined by the following rule.

kx fitness,,, ,if fitness 2 k x fitness,,,

fitness, other case

fitness' = { @)
where fitness is the original fitness value and ﬁtnessf is the
modified value. fitness,,,, is the average of fitness values and k
is a constant greater than 1. The modified mutation probability,
P 18 given as

P (ige)1f the fittest is not the same for

. recent N, generations
Pl +1) = o Vxk < (8)
Pmoal pm(lgen)x 1 —pmilaw
D (i) <k, other case
where i, is the generation number. p,g, p,, 4, and k; is a

positive constant less than 1. N, is an integer constant.
NMGA differs from MGA in the mutation probability. NMGA
is able to hold the mutation probability when there is a change
in the fittest recently, which is considered that the mutation
probability at the time is appropriate for the GA under the
problem.

Some aspects to be considered to use the modified genetic
algorithm are as follows:
o Chromosome representation and Population size: a rule table
of condition-action rules is indexed implicitly by the pattern in
the condition part. 2 bits are used to represent the output
(angular velocity) in {-1, 0, 1, 2}. Since there are 5 linguistic
variables and two fuzzy sets for each variable in the case of 2
agents, a rule table encoded in a binary string requires 64 bits
since (2 x 2 x 2 x 2 x 2) x 2 = 64. In the case of 3 agents, a
rule table is encoded in a 256 bit long binary string. A
population consists of 50 chromosomes in our simulation.
¢ Fitness: the fitness function is defined as
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Vi, j st distance(T,,T)<1.5

(12)

3=

_ | 1, when the prey captured
0, otherwise

where 2, is the time when a simulation stops. When no goal
OCCUIS £, is set to 100, i.e. 5 sec. F(#) rewards the agent that
moves closer to the prey. F,(f) prevents the agents from
collisions.

e Reproduction: first, the fitness values are normalized by
dividing them by the average fitness value of the current
population. A chromosome is reproduced j times, where j is an
integer part of the normalized fitness. The remaining fractions
are used to generate additional offsprings using the standard
roulette wheel selection method. We used the elitist strategy,
that is, the best chromosome is always reproduced without any
alterations. Each simulation consists of 200 generations. '
e Crossover: we used one point crossover. From experi-
mentation, we found that a crossover probability of 0.8 yielded
best results.

e Mutation: we used the modified mutation probability. The
MGA parameters are as following: p,4=0.5, p,, 1=0.01, N,
=5,k=2.5,and k; =009.

IV. Simulation results and discussion

Fig. 6 and Fig. 8 show the typical curves of fitness values
for the case 1 and case 2 with 2 agents, respectively. Each
graph illustrates the maximum fitness value at each generation.
In the case of the present experimental task the increase over
generations indicates that the agent is learning more and more
appropriate behavior. NMGA successfully found solutions to
the both cases. The agents have displayed co-operative
behavior to capture the prey while satisfying the constraint.

In the case 1, the NMGA found a solution (FLC capable of
making the agents captures the prey) after about 30
generations. In the case 2, the NMGA found a solution after
45 generation due to the moving prey. In both cases, the agents
capture the prey after about 4 seconds.
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Fig. 6. Best fitness results for the case 1.
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Fig. 7. Agent trajectories for the case 1.
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Fig. 8. Best fitness results for the case 2.
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Fig. 9. Agent trajectories for the case 2.
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Fig. 10. Agent trajectories for the case 1.

Fig. 7 and Fig. 9 show the typical successful trajectories of
the agents for the case 1 and 2 with 2 agents, respectively. 'o’
represents the end position of an agent. In the case 1, the upper
agent shows a complicated motion due to the wall. The other
agent is waiting till other agent approaches in the right
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Fig. 11. Agent trajectories for the case 2.

direction. Although the translational velocities are equal the
lengths of the trajectories are different because the agent
learns to know how to stop using the mutual annihilation
policy. In the case 2, the agents successfully captured the
moving prey by predicting the motion of the prey.

Fig. 10 and Fig. 11 shows the typical successful trajectories
of the agents for the case 1 and 2 with 3 agents, respectively.
The predators successfully captured the prey after some
complicated movements. Due to the increased complexity,
NMGA sometimes failed to find a solution. In order to
validate the use of NMGA we simulated the.same cases so far
with a standard GA(SGA) with p,, = 0.05 which was tuned
manually. All the cases were simulated 20 times. Table 1 and 2
summarize the results. where SR means the success ratio and

Table 1. Performance comparison between SGA and MGA
for 2 agents problem. :

2 case 1, case 1, case2, | Case2,
Agents SR Avg. Gen. # SR Avg. Gen. #
SGA 1.0 21.1 0.95 50.4
NMGA 1.0 297 1.0 51.3

Table 2. Performance comparison between SGA and MGA
for 3 agents problem.

3 case 1, Case 1, | case2, Case 2,
Agents SR Avg. Gen. # SR Avg. Gen. #
SGA 0.3 104.7 0 N/A
NMGA 1.0 83.5 0.15 168.3
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Fig. 12. Agent trajectories for the case 2 with A7=0.01sec.

Avg. Gen. # means the average number of generations
required to find a solution among the successful executions.

SGA is slightly better in the problems with 2 agents.
However, in the 3 agents problems NMGA shows much better
performance than SGA, which shows the suitability of NMGA
for complex problems due to the increased diversity from the
mutation process. In the case 2 with 3 agents, SGA could not
find a solution. ) ‘

In order to check if the sampling period (0.05 sec) affects
the motion of the agents, we simulated the case 2 with 2
agents and the same fuzzy logic controller as in Fig. 9 and a
sampling peridd of 0.01 second. Fig. 12 show the stroboscopic
agent trajectories at every 0.5 second for the sampling period
0f 0.01 sec. It shows the almost same trajectories as in Fig. 9,
which indicates that the obtained fuzzy logic controller is
robust to a sampling period variation.

V. Conclusion

We have implemented an evolutionary approach using a
genetic algorithm to design a fuzzy logic controllers for multi-
agent system solving a pursuit problem in a continuous world.
Each agents is modeled as a two-wheeled mobile robot.
Solving a continuous pursuit problem using FLC is’ more
difficult than its discrete counterpart, because it includes a
moving obstacle avoidance problem and FLC indirectly
controls the position of a robot. A new modified genetic
algorithm was applied to automating the discovery of rule
table of the fuzzy logic controller for multi-agents solving a
pursuit problem. Simulation results with 2 and 3 agents
showed emergent co-operative behaviors and the validity and
generality of the proposed method. Developing a way of
effectively decreasing the complexy of the problem as the
number of agents increases remains as a further study.
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