• Title/Summary/Keyword: euler equation

Search Result 447, Processing Time 0.022 seconds

Vibration analysis of rotating beam with variable cross section using Riccati transfer matrix method

  • Feyzollahzadeh, Mahdi;Bamdad, Mahdi
    • Structural Engineering and Mechanics
    • /
    • v.70 no.2
    • /
    • pp.199-207
    • /
    • 2019
  • In this paper, a semi-analytical method will be discussed for free vibration analysis of rotating beams with variable cross sectional area. For this purpose, the rotating beam is discretized through applying the transfer matrix method and assumed the axial force is constant for each element. Then, the transfer matrix is derived based on Euler-Bernoulli's beam differential equation and applying boundary conditions. In the following, the frequencies of the rotating beam with constant and variable cross sections are determined using the transfer matrix method in several case studies. In order to eliminate numerical difficulties in the transfer matrix method, the Riccati transfer matrix is employed for high rotation speed and high modes. The results are compared with the results of the finite elements method and Rayleigh-Ritz method which show good agreement in spite of low computational cost.

Time-dependent simplified spherical harmonics formulations for a nuclear reactor system

  • Carreno, A.;Vidal-Ferrandiz, A.;Ginestar, D.;Verdu, G.
    • Nuclear Engineering and Technology
    • /
    • v.53 no.12
    • /
    • pp.3861-3878
    • /
    • 2021
  • The steady-state simplified spherical harmonics equations (SPN equations) are a higher order approximation to the neutron transport equations than the neutron diffusion equation that also have reasonable computational demands. This work extends these results for the analysis of transients by comparing of two formulations of time-dependent SPN equations considering different treatments for the time derivatives of the field moments. The first is the full system of equations and the second is a diffusive approximation of these equations that neglects the time derivatives of the odd moments. The spatial discretization of these methodologies is made by using a high order finite element method. For the time discretization, a semi-implicit Euler method is used. Numerical results show that the diffusive formulation for the time-dependent simplified spherical harmonics equations does not present a relevant loss of accuracy while being more computationally efficient than the full system.

A new solution for dynamic response of FG nonlocal beam under moving harmonic load

  • Hosseini, S.A.H.;Rahmani, O.;Bayat, S.
    • Steel and Composite Structures
    • /
    • v.43 no.2
    • /
    • pp.185-200
    • /
    • 2022
  • A Closed-form solution for dynamic response of a functionally graded (FG) nonlocal nanobeam due to action of moving harmonic load is presented in this paper. Due to analyzing in small scale, a nonlocal elasticity theory is utilized. The governing equation and boundary conditions are derived based on the Euler-Bernoulli beam theory and Hamilton's principle. The material properties vary through the thickness direction. The harmonic moving load is modeled by Delta function and the FG nanobeam is simply supported. Using the Laplace transform the dynamic response is obtained. The effect of important parameters such as excitation frequency, the velocity of the moving load, the power index law of FG material and the nonlocal parameter is analyzed. To validate, the results were compared with previous literature, which showed an excellent agreement.

Thermal-magneto-mechanical stability analysis of single-walled carbon nanotube conveying pulsating viscous fluid

  • R. Selvamani;M. Mahaveer Sree Jayan;Marin Marin
    • Coupled systems mechanics
    • /
    • v.12 no.1
    • /
    • pp.21-40
    • /
    • 2023
  • In thisstudy, the vibration problem ofthermo elastic carbon nanotubes conveying pulsating viscous nano fluid subjected to a longitudinal magnetic field is investigated via Euler-Bernoulli beam model. The controlling partial differential equation of motion is arrived by adopting Eringen's non local theory. The instability domain and pulsation frequency of the CNT is obtained through the Galerkin's method. The numerical evaluation of thisstudy is devised by Haar wavelet method (HWM). Then, the proposed model is validated by analyzing the critical buckling load computed in presentstudy with the literature. Finally, the numerical calculation ofsystem parameters are shown as dispersion graphs and tables over non local parameter, magnetic flux, temperature difference, Knudsen number and viscous parameter.

Thermal post-buckling and primary resonance of porous functionally graded beams: Effect of elastic foundations and geometric imperfection

  • Jia-Qin Xu;Gui-Lin She
    • Computers and Concrete
    • /
    • v.32 no.6
    • /
    • pp.543-551
    • /
    • 2023
  • In this article, thermal post-buckling and primary resonance of the porous functionally graded material (FGM) beams in thermal environment considering the geometric imperfection are studied, the material properties of FGM beams are assumed to vary along the thickness of the beam, meanwhile, the porosity volume fraction, geometric imperfection, temperature, and the elastic foundation are considered, using the Euler-Lagrange equation, the nonlinear vibration equations are derived, after the dimensionless processing, the dimensionless equations of motion can be obtained. Then, the two-step perturbation method is applied to solve the vibration problems, the resonance and thermal post-buckling response relations are obtained. Finally, the functionally graded index, the porosity volume fraction, temperature, geometric imperfection, and the elastic foundation on the resonance behaviors of the FGM beams are presented. It can be found that these parameters can influence the thermal post-buckling and primary resonance problems.

DEVELOPMENT OF A NON-STANDARD FINITE DIFFERENCE METHOD FOR SOLVING A FRACTIONAL DECAY MODEL

  • SAID AL KATHIRI;EIHAB BASHIER;NUR NADIAH ABD HAMID;NORSHAFIRA RAMLI
    • Journal of applied mathematics & informatics
    • /
    • v.42 no.3
    • /
    • pp.695-708
    • /
    • 2024
  • In this paper we present a non-standard finite difference method for solving a fractional decay model. The proposed NSFDM is constructed by incorporating a non-standard denominator function, resulting in an explicit numerical scheme as easy as the conventional Euler method, but it provides very accurate solutions and has unconditional stability. Two examples from the literature are presented to demonstrate the performance of the proposed numerical scheme, which is compared to three methods from the literature. It is found that the method's estimated errors are extremely minimal, such as within the machine precision.

Application of numerical methods for dynamic response induced by moving load on concrete shells containing nanoparticles with economic study

  • Taoqian Xie;Wei Han;Haoqi Chang;M.R. Motaghedfer
    • Advances in nano research
    • /
    • v.16 no.3
    • /
    • pp.303-311
    • /
    • 2024
  • This paper conducts a thorough economic evaluation of integrating nanoparticles into concrete structures within the construction industry, aiming to elevate the material properties of concrete. Employing the Halpin-Tsai micromechanics theory for deriving the effective material properties of the nanocomposite concrete structure, the research investigates the nuanced impact of nanoparticles on various mechanical properties, including the modulus of elasticity, compressive strength, and their indirect effects on the percentage of reinforcement. Implementing the Euler theory to formulate the governing equation based on Hamilton's principle, the study delves into the pricing dynamics of nanoparticles and their influence on the overall cost structure of concrete structures. Notably, the findings reveal that a measured increase in the volume percentage of nanoparticles, up to 1%, results in a remarkable 78% improvement in elastic modulus and a substantial 142% reduction in armature percentage. Remarkably, from an economic perspective, the incremental cost associated with the integration of nanoparticles is relatively modest (around $1 per ton of concrete), considering the substantial enhancements in mechanical properties achieved.

Nonlinear dynamics of SWNT reinforced Aluminium alloy beam

  • Abdellatif Selmi;Samy Antit
    • Steel and Composite Structures
    • /
    • v.51 no.4
    • /
    • pp.407-416
    • /
    • 2024
  • The main objective of the present paper is to investigate the nonlinear vibration of buckled beams fixed at both ends and made of Aluminium allay (Al-alloy) reinforced with randomly dispersed Single Walled Carbon Nanotube (SWNT). The Mori-Tanak (M-T) micromechanical approach is selected to predict the homogenized material properties of the beams. The differential equation of motion governing the nonlinear behavior of the Euler-Bernoulli homogeneous beam is solved using an analytical method. The influences of diverse parameters including axial load, vibration amplitude, SWNT volume fraction, SWNT aspect ratio and beam slenderness ratio on the nonlinear frequency are studied.

A Study on Steady-State Performance Analysis and Dynamic Simulation for Medium Scale Civil Aircraft Turbofan Engine (I) (중형항공기용 터보팬엔진의 정상상태 성능해석 및 동적모사에 관한 연구 (I))

  • 공창덕;고광웅;기자영
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.2 no.2
    • /
    • pp.47-55
    • /
    • 1998
  • Steady-state and transient performance for the medium scale civil aircraft turbofan engine was analyzed. Steady-state performance was analyzed on maximum take-off condition, maximum climb condition, and cruise condition. At 90%RPM of the low pressure compressor, the partload performance was economized. The transient performance was analyzed with cases of the step increase, the ramp increase, the ramp decrease, and the step increase and ramp decrease for the input fuel flow. For the transient performance analysis, work matching between compressor and turbine was needed. Modified Euler method was used the integration of residual torque in work matching equation. At all flight condition, the overshoot of the high pressure turbine inlet temperature was appeared in the step and ramp increase case, and the surge of high pressure compressor was appeared in the step increase case and the ramp increase case within 5.5 seconds of maximum climb condition.

  • PDF

Two dimensional Fast DCT using Polynomial Transform without Complex Computations (복소연산이 없는 Polynomial 변환을 이용한 2차원 고속 DCT)

  • Park, Hwan-Serk;Kim, Won-Ha
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.40 no.6
    • /
    • pp.127-140
    • /
    • 2003
  • This paper develops a novel algorithm of computing 2 Dimensional Discrete Cosine Transform (2D-DCT) via Polynomial Transform (PT) converting 2D-DCT to the sum of 1D-DCTs. In computing N${\times}$M size 2D-DCT, the conventional row-column algorithm needs 3/2NMlog$_2$(NM)-2NM+N+M additions and 1/2NMlog$_2$(NM) additions and 1/2NMlog$_2$(NM) multiplications, while the proposed algorithm needs 3/2NMlog$_2$M+NMlog$_2$N-M-N/2+2 additions and 1/2NMlog$_2$M multiplications The previous polynomial transform needs complex operations because it applies the Euler equation to DCT. Since the suggested algorithm exploits the modular regularity embedded in DCT and directly decomposes 2D DCT into the sum of ID DCTs, the suggested algorithm does not require any complex operations.