References
- Amiri, A., Talebitooti, R. and Li, L. (2018), "Wave propogation is viscous-fluid-conveying piezoelectric nanotubes considering surface stress effects and Kundsen number based on nonlocal strain gradient theory", Eur. Phys. J. Plus, 133, 1-17. https://doi.org/10.1140/epjp/i2018-12077-y.
- Ariaratnam, S.T. and Namachchivaya, N.S. (1986), "Dynamic stability of pipes conveying pulsating fluid", J. Sound. Vib., 107(2), 215-230. https://doi.org/10.1016/0022-460X(86)90233-6.
- Azrar, A., Azrar, L. and Aljinaidi, A.A. (2015), "Numerical modeling of dynamic and parametric instabilities of single-walled carbon nanotubes conveying pulsating and viscous fluid", Compos. Struct., 125, 127-143. https://doi.org/10.1016/j.compstruct.2015.01.044.
- Chen, C.F. and Hsiao, C.H. (1997), "Haar wavelet method for solving lumped and distributed-parameter systems", IEE Proc. Contr. Theor. Appl., 144(1), 87-94. https://doi.org/10.1049/ip-cta:19970702.
- Eringen, A.C. (1983), "On differential equation of nonlocal elasticity and solution", J. Appl. Phys., 54, 4703-4710. https://doi.org/10.1063/1.332803.
- Eringen, A.C. and Edelen, D.G.B. (1972), "On nonlocal elasticity", Int. J. Eng. Sci., 10, 233-248. https://doi.org/10.1016/0020-7225(72)90039-0.
- Ghavanloo, E. and Fazelzadeh, S.A. (2011), "Flow-thermoelastic vibration and instability analysis of viscoelastic carbon nanotubes embedded in viscous fluid", Physica E: Low Dimens. Syst. Nanostruct., 44, 17-24. https://doi.org/10.1016/j.physe.2011.06.024.
- Ghavanloo, E., Rafiei, M. and Daneshman, F. (2011), "In-plane vibration analysis of curved carbon nanotubes conveying fluid embedded in viscoelastic medium", Phys. Lett. A., 375, 1994-1999. https://doi.org/10.1016/j.physleta.2011.03.025.
- Guven, U. (2014), Transverse vibrations of single-walled carbon nanotubes with initial stress under magnetic field", Compos. Struct., 114, 92-98. https://doi.org/10.1016/j.compstruct.2014.03.054.
- Hajdo, E., Mejia-Nava, R.A., Imamovic, I. and Ibrahimbegovic, A. (2021), "Linearized instability analysis of frame structures under non-conservative loads: Static and dynamic approach", Couple. Syst. Mech., 10(1), 79-102. https://doi.org/10.12989/csm.2021.10.1.079.
- Hariharan, G. and Kannan, K. (2014), "Review of wavelet methods for the solution of reaction-diffusion problems in science and Engineering", Appl. Math. Model., 38(3), 799-813. https://doi.org/10.1016/j.apm.2013.08.003.
- Hein, H. and Feklistova, L. (2011), "Computationally eflcient delamination detection in composite beams using Haar wavelets", Mech. Syst. Signal. Pr., 25(6), 2257-2270. https://doi.org/10.1016/j.ymssp.2011.02.003.
- Heydari, M.H., Hooshmandasl, M.R., Mohammadi, F. and Cattani, C. (2014), "Wavelets method for solving systems of nonlinear singular fractional Volterraintegro-differential equations", Commun. Nonlin. Sci. Numer. Simul., 19(1), 37-48. https://doi.org/10.1016/j.cnsns.2013.04.026.
- Hosseini, M. and Sadeghi-Goughari, M. (2016), "Vibration and instability analysis of nanotubes conveying fluid subjected to a longitudinal magnetic field", Appl. Math. Model., 40, 2560-2576. https://doi.org/10.1016/j.apm.2015.09.106.
- Hsiao, C.H. (2015), "A Haar wavelets method of solving differential equations characterizing the dynamics of a current collection system for an electric locomotive", Appl. Math. Comput., 265, 928-935. https://doi.org/10.1016/j.amc.2015.06.007.
- Ibrahimbegovic, A. and Mejia-Nava, R.A. (2021), "Heterogeneities and material-scales providing physically-based damping to replace Rayleigh damping for any structure size", Couple. Syst. Mech., 10(3), 201-216. https://doi.org/10.12989/csm.2021.10.3.201.
- Ibrahimbegovic, A., Mejia-Nava, R.A., Hajdo, E. and Limnios, N. (2022), "Instability of (heterogeneous) Euler beam: Deterministic vs. stochastic reduced model approach", Couple. Syst. Mech., 11(2), 167-198. https://doi.org/10.12989/csm.2022.11.2.167.
- Jena, S.K. and Chakraverty, S. (2019), "Dynamic behavior of an electromagnetic nanobeam using theHaar wavelet method and the higher-order Haar wavelet method", Eur. Phys. J. Plus, 134, 1-18. https://doi.org/10.1140/epjp/i2019-12874-8.
- Jena, S.K., Chakraverty, S. and Malikan, M. (2019), "Implementation of Haar wavelet, higher order Haar wavelet, and differential quadrature methods on buckling response of strain gradient nonlocal beam embedded in an elastic medium", Eng. Comput., https://doi.org/10.1007/s00366-019-00883-1.
- Jin, G., Xie, X. and Liu, Z. (2013), "Free vibration analysis of cylindrical shells using the Haar wavelet method", Int. J. Mech. Sci., 77, 47-56. https://doi.org/10.1016/j.ijmecsci.2013.09.025.
- Jin, G., Xie, X. and Liu, Z. (2014), "The Haar wavelet method for free vibration analysis of functionally graded cylindrical shells based on the shear deformation theory", Compos. Struct., 108, 435-448. https://doi.org/10.1016/j.compstruct.2013.09.044.
- Jin, J.D. and Song, Z.Y. (2005), "Parametric resonances of supported pipes conveying pulsating fluid", J. Fluid. Struct., 20(6), 763-783. https://doi.org/10.1016/j.jfluidstructs.2005.04.007.
- Karlicic, D., Kozic, P., Pavlovic, R. and Nesic, N. (2017), "Dynamic stability of single-walled carbon nanotube embedded in a viscoelastic medium under the influence of the axially harmonic load", Compos. Struct., 162, 227-243. https://doi.org/10.1016/j.compstruct.2016.12.003.
- Kiani, K. (2014), "Vibration and instability of a single-walled carbon nanotube in a three-dimensional magnetic field", J. Phys. Chem. Solid., 75, 15-22. https://doi.org/10.1016/j.jpcs.2013.07.022.
- Kiani, K. (2015), "Stability and vibrations of doubly parallel current carrying nanowires immersed in a longitudinal magnetic field", Phys. Lett. A, 379, 348-360. https://doi.org/10.1016/j.physleta.2014.11.006.
- Kuang, Y.D., He, X.Q., Chen, C.Y. and Li, G.Q. (2009), "Analysis of nonlinear vibrations of double-walled carbon nanotubes conveying fluid", Comput. Mater. Sci., 45, 875-880. https://doi.org/10.1016/j.commatsci.2008.12.007.
- Lee, H.L. and Chang, W.J. (2008), "Free transverse vibration of the fluid-conveying single-walled carbon nanotube using nonlocal elastic theory", J. Appl. Phys., 103, 024302-024305. https://doi.org/10.1063/1.2822099.
- Lei, X.W., Natsuki, T., Shi, J.X. and Ni, Q.Q. (2012), "Surface effects on the vibrational frequency of double-walled carbon nanotubes using the nonlocal Timoshenko beam model", Compos. B. Eng., 43, 64-69. https://doi.org/10.1016/j.compositesb.2011.04.032.
- Lepik, U. (2011), "Buckling of elastic beams by the Haar wavelet method", Estonian J. Eng., 17, 271.
- Li, L., Hu, Y. and Ling, L. (2016), "Wave propagation in viscoelastic single-walled carbon nanotubes with surface effect under magnetic field based on nonlocal strain gradient theory", Physica E: Low Dimens. Syst. Nanostruct., 75, 118-124. https://doi.org/10.1016/j.physe.2015.09.028.
- Liu, H., Liu, Y., Dai, J. and Cheng, Q. (2018), "An improved model of carbon nanotube conveying flow by considering comprehensive effects of Knudsen number", Microfluid Nanofluidics., 22, 66. https://doi.org/10.1007/s10404-018-2088-7.
- Mahaveer Sree Jayan, M., Kumar, R., Selvamani, R. and Rexy, J. (2020), "Nonlocal dispersion analysis of a fluid-conveying thermo elastic armchair single walled carbon nanotube under moving harmonic excitation", J. Solid. Mech., 12(1), 189-203. https://doi.org/10.22034/JSM.2019.1867399.1431.
- Murmu, T., McCarthy, M.A. and Adhikari, S. (2012), "Vibration response of double-walled carbon nanotubes subjected to an externally applied longitudinal magnetic field: A nonlocal elasticity approach", J. Sound. Vib., 331, 5069-5086. https://doi.org/10.1016/j.jsv.2012.06.005.
- Nguyen, C.U., Hoang, T.V., Hadzalic, E., Dobrilla, S., Matthies, H.G. and Ibrahimbegovic, A. (2022), "Viscoplasticity model stochastic parameter identification: Multi-scale approach and Bayesian inference", Couple Syst. Mech., 11(5), 411-442. https://doi.org/10.12989/csm.2022.11.5.411.
- Ni, B., Sinnott, S.B., Mikulski, P.T. and Harrison, J.A. (2002), "Compression of carbon nanotubes filled with C60, CH4, or Ne: Predictions from molecular dynamics simulations", Phys. Rev. Lett., 88, 205505. https://doi.org/10.1103/PhysRevLett.88.205505.
- Ni, Q., Tang, M., Wang, Y. and Wang, L. (2014), "In-plane and out-of-plane dynamics of a curved pipe conveying pulsating fluid", Nonlin. Dyn., 75(3), 603-619. https://doi.org/10.1007/s11071-013-1089-z.
- Ni, Q., Zhang, Z., Wang, L., Qian, Q. and Tang, M. (2014), "Nonlinear dynamics and synchronization of two coupled pipes conveying pulsating fluid", Acta Mechanica Solida Sinica, 27(2), 162-171. https://doi.org/10.1016/S0894-9166(14)60026-4.
- Noah, S.T. and Hopkins, G.R. (1980), "Dynamic stability of elastically supported pipes conveying pulsating fluid", J. Sound. Vib., 71(1), 103-116. https://doi.org/10.1016/0022-460X(80)90411-3.
- Paidoussis, M.P. (1998), Fluid-Structure Interactions: Slender Structures and Axial Flow, Vol. 1, Academic Press.
- Paidoussis, M.P. and Sundararajan, C. (1975), "Parametric and combination resonances of a pipe conveying pulsating fluid", J. Appl. Mech., 42(4), 780-784. https://doi.org/10.1115/1.3423705.
- Panda, L.N. and Kar, R.C. (2007), "Nonlinear dynamics of a pipe conveying pulsating fluid with parametric and internal resonances", Nonlin. Dyn., 49(1-2), 9-30. https://doi.org/10.1007/s11071-006-9100-6.
- Panda, L.N. and Kar, R.C. (2008), "Nonlinear dynamics of a pipe conveying pulsating fluid with combination, principal parametric and internal resonances", J. Sound. Vib., 309(3-5), 375-406. https://doi.org/10.1016/j.jsv.2007.05.023.
- Pipes, R.B. and Hubert, P. (2003), "Helical carbon nanotube arrays: Thermal expansion", Compos. Sci. Technol., 63, 1571-1579. https://doi.org/10.1016/S0266-3538(03)00075-7.
- Raravikar, N.R., Keblinski, P., Rao, A.M., Dresselhaus, M.S., Schadler, L.S. and Ajayan, P.M. (2002), "Temperature dependence of radial breathing mode Raman frequency of single-walled carbon nanotubes", Phys. Rev. B., 66, 235424. https://doi.org/10.1103/PhysRevB.66.235424.
- Rashidi, V., Mirdamadi, H.R. and Shiran, E. (2012), "A novel model for vibrations of nanotubes conveying nanoflow", Comput. Mater. Sci., 51, 347-352. https://doi.org/10.1016/j.commatsci.2011.07.030.
- Schelling, P.K. and Keblinski, P. (2003), "Thermal expansion of carbon structures", Phys. Rev. B., 68, 035425. https://doi.org/10.1103/PhysRevB.68.035425.
- Selvamani, R. and Ponnusamy, P. (2013), "Wave propagation in a generalized thermo elastic circular plate immersed in fluid", Struct. Eng. Mech., 46(6), 827-842. http://doi.org/10.12989/sem.2013.46.6.827.
- Selvamani, R., Mahaveer Sree Jayan, M. and Ebrahimi, F. (2021), "Ultrasonic waves in a single walled armchair carbon nanotube resting on nonlinear foundation subjected to thermal and in plane magnetic fields", Couple. Syst. Mech., 10(1), 39-60. http://doi.org/10.12989/csm.2021.10.1.039.
- Selvamani, R., Mahaveer Sree Jayan, M., Dimitri, R., Tornabene, R. and Ebrahimi, F. (2020), "Nonlinear magneto-thermo-elastic vibration of mass sensor armchair carbon nanotube resting on an elastic substrate", Curve. Layer. Struct., 7, 153-165. https://doi.org/10.1515/cls-2020-0012.
- Selvamani, R., Mahesh, S. and Ebrahimi, F. (2021), "Frequency characteristics of a multiferroic Piezoelectric/LEMV/CFRP/Piezomagnetic composite hollow cylinder under the influence of rotation and hydrostatic stress", Couple. Syst. Mech., 10(2), 185. http://doi.org/10.12989/csm.2021.10.2.185.
- Tokio, Y. (1995), "Recent development of carbon nanotube", Synthetic Metal., 70, 1511-1518. https://doi.org/10.1016/0379-6779(94)02939-V.
- Wang, L. (2009), "Dynamical behaviors of double-walled carbon nanotubes conveying fluid accounting for the role of small length scale", Comput. Mater. Sci., 45, 584-588. https://doi.org/10.1016/j.commatsci.2008.12.006.
- Wang, L. (2009), "Vibration and instability analysis of tubular nano- and micro-beams conveying fluid using nonlocal elastic theory", Physica E: Low Dimens. Syst. Nanostruct., 41, 1835-1840. https://doi.org/10.1016/j.physe.2009.07.011.
- Wang, L., Ni, Q., Li, M. and Qian, Q. (2008), "The thermal effect on vibration and instability of carbon nanotubes conveying fluid", Physica E: Low Dimens. Syst. Nanostruct., 40, 3179-3182. https://doi.org/10.1016/j.physe.2008.05.009.
- Xia, W. and Wang, L. (2010), "Vibration characteristics of fluid-conveying carbon nanotubes with curved longitudinal shape", Comput. Mater. Sci., 49, 99-103. https://doi.org/10.1016/j.commatsci.2010.04.030.
- Zhang, C.L. and Shen, H.S. (2006), "Temperature-dependent elastic properties of single-walled carbon nanotubes: Prediction from molecular dynamics simulation", Appl. Phys. Lett., 89, 081904. https://doi.org/10.1063/1.2336622.
- Zhang, D.P., Lei, Y. and Shen, Z.B. (2017), "Effect of longitudinal magnetic field on vibration characteristics of single-walled carbon nanotubes in a viscoelastic medium", Brazil. J. Phys., 47, 640-656. https://doi.org/10.1007/s13538-017-0524-x.
- Zhang, Q., Yang, D.J., Wang, S.G., Yoon, S.F. and Ahn, J. (2006), "Influences of temperature on the Raman spectra of single-walled carbon nanotubes", Smart. Mater. Struct., 15(1), S1. https://doi.org/10.1088/0964-1726/15/1/001.
- Zhang, Y.C. and Wang, X. (2005), "Thermal effects on interfacial stress transfer characteristics of carbon nanotubes/polymer composites", Int. J. Solid. Struct., 42, 5399-5412. https://doi.org/10.1016/j.ijsolstr.2005.02.038.
- Zhang, Y.F., Yao, M.H., Zhang, W. and Wen, B.C. (2017), "Dynamical modeling and multi-pulse chaotic dynamics of cantilevered pipe conveying pulsating fluid in parametric resonance", Aerosp. Sci. Technol., 68, 441-453. https://doi.org/10.1016/j.ast.2017.05.027.
- Zhang, Y.Q., Liu, X. and Liu, G.R. (2007), "Thermal effect on transverse vibrations of double-walled carbon nanotubes", Nanotechnol., 18, 44570. https://doi.org/10.1088/0957-4484/18/44/445701.
- Zhen, Y.X., Fang, B. and Tang, Y. (2011), "Thermal-mechanical vibration and instability analysis of fluid-conveying double walled carbon nanotubes embedded in visco-elastic medium", Physica E: Low Dimens. Syst. Nanostruct., 44, 379-385. https://doi.org/10.1016/j.physe.2011.09.004.