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DEVELOPMENT OF A NON-STANDARD FINITE

DIFFERENCE METHOD FOR SOLVING A FRACTIONAL

DECAY MODEL†
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Abstract. In this paper we present a non-standard finite difference method
for solving a fractional decay model. The proposed NSFDM is constructed

by incorporating a non-standard denominator function, resulting in an ex-

plicit numerical scheme as easy as the conventional Euler method, but it
provides very accurate solutions and has unconditional stability. Two ex-

amples from the literature are presented to demonstrate the performance of

the proposed numerical scheme, which is compared to three methods from
the literature. It is found that the method’s estimated errors are extremely

minimal, such as within the machine precision.
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1. INTRODUCTION

The origins of fractional calculus may be traced to a correspondence between
Leibniz and L’Hopital in 1695 on a semi-derivative concept. Many mathemati-
cians have since been interested in fractional calculus, including Euler, Riemann,
Fourier, Grunewald, and Liouville [1].

Currently, fractional differential equations (FDEs) are extensively used to
model various problems in different fields of science and engineering. These
include epidemic diseases, chemical processes [2, 3], anomalous diffusion, and
viscoelasticity [4, 5]. One of the simplest FDE models is the decay model, which
is of the form
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cDαy = −λy, y(0) = y0. (1)

Fractional decay models provide a flexible framework for characterizing phe-
nomena in which conventional exponential decay models fail to accurately de-
pict the decay process. Their wide-ranging applications encompass various disci-
plines, contributing to a more sophisticated comprehension of decay mechanisms
characterized by dynamic and intricate decay rates. [1]. Example to such an ap-
plication is the work in [12] which aimed to construct fractional Bateman equa-
tions capable of simulating memory effects in the transformations of successive
isotopes. Another example is the nuclear decay equation that is analyzed in [6]
through the application of fractional calculus. Within this particular framework,
the first-order time derivative is transformed into a Caputo fractional derivative.
As a result, the time fractional nuclear decay equation is obtained.

Some recent numerical techniques for solving fractional order differential equa-
tions are as follows: Turkyilmazoglu [8] proposed a modified version of the
Adomian Decomposition Method that incorporates a functional term to solve
fractional ordinary and partial differential equations. The approach is precise,
superior than traditional ADM, and straightforward to implement for fractional
ordinary and partial differential equations in mathematical models. In a sepa-
rate investigation conducted by Alghtani and Saad [9], the spectral collocation
methodology was examined for three novel models of the space fractional Fisher
equation. The research used several techniques such as exponential decay kernel,
Chebyshev polynomial features, finite differences, Newton’s method, and power
law kernel. The findings indicate a strong correlation between the solutions de-
rived from Chebyshev polynomials and the power law and Mittag-Leffler kernels.
The authors Wang et. al presented a novel fourth-order fractional Adams-type
implicit-explicit method in their publication [10]. This method is designed to
solve nonlinear fractional ordinary differential equations with weakly singular
solutions. The authors demonstrated that the method converges and remains
stable under the Lipschitz condition.
Kumar et. al [23] analyzes a fractional-order prey–predator system in presence of
harvesting and fear effect. Analytically, the condition for existence, uniqueness,
nonnegativity, and boundedness are investigated. Existence criteria for feasible
equilibrium points are discussed, and the conditions for local and global stability
are explored.
In order to obtain a fully discrete method, the standard central finite difference
approximation was used to discretize the second-order spatial derivative [24]. By
using ADI scheme for the three-dimensional problem, the overall computational
cost was reduced significantly. Two new approaches were adopted for theoreti-
cal stability analysis. They provided the convergence behaviour of the proposed
method and the error bounds were proved.
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Fractional Runge-Kutta numerical algorithms for solving the fractional decay
model had been devised, but could not achieve more than order 4 accuracy,
according to [7].

In general, conventional numerical techniques are meant to handle a class of
generic problems without taking into account the structure of any specific prob-
lems [11]. As a result, they were unable to capture the qualitative characteristics
of the exact solution [2].

An essential aspect of constructing non-standard finite difference methods
(NSFDMs) is integrating the qualitative characteristic of the exact model into
the non-standard difference scheme [13, 14, 15]. Therefore, while achieving great
stability qualities, it is also possible to provide an accurate solution for this
fractional model [16].

Nonstandard finite difference methods have a particular advantage over tra-
ditional finite difference schemes because they may provide exact numerical
schemes that lead to exact solutions at the nodal points. For the purpose of solv-
ing certain classes of first-order differential equations, such as the logistic and
exponential growth, systems of linear ODE models, higher order ODEs, some
PDE problems, etc., Micken was the first to design and explain the derivation of
exact finite difference techniques [2, 20]. Initially, nonstandard finite difference
schemes were designed to offer either an accurate finite difference scheme or the
optimal numerical scheme, with the goal of achieving all the qualitative elements
of the exact solution of the original problem.

The purpose of this paper is to design a numerical scheme employing non-
standard finite difference discretization to solve the fractional decay model (1).
It compares the performance of the proposed scheme to other methods found
in the literature. The main features of the proposed numerical approach are its
explicit Euler method-like design, high order of convergence, and unconditional
stability. The method’s approximation errors, measured using the infinity norm,
are very small and fall within or very near the machine precision.

The rest of this paper is organized as follows. Section 2 provides an overview
of fractional calculus (FC) and the development of a non-standard scheme us-
ing Mickens principles. In Section 3, the proposed methodology is introduced.
Section 4 employs numerical examples from existing literature to evaluate the ef-
fectiveness of the proposed technique. The obtained findings are then compared
with those of other methods mentioned in the literature. Finally, the conclusions
and discussions are presented in Section 5.

2. MATERIALS AND METHODS

2.1. Materials. In this section, the basic definitions and properties of FC are
presented.
Definition 1: For any f ∈ L(D), the left -sided Riemann-Liouville fractional
integral of order α > 0 based at x = a, denoted by aI

α
x f , is defined by [17] as
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follows:

aI
α
x f(x) =

1

Γ(α)

∫ x

a

(x− s)α−1f(s)ds,

and the right -sided Riemann-Liouville fractional integral of order α > 0 based
at x = b, denoted by bI

α
x f , is defined by [17]

bI
α
x f(x) =

1

Γ(α)

∫ b

x

(s− x)α−1f(s)ds.

Definition 2: For any f ∈ L(D), and n − 1 < α < n, n ∈ N its left -sided
Riemann-Liouville fractional integral of order α (based at x = a), denoted by
R
a D

α
xf , is defined by [17] as follows:

R
a D

α
xf(x) =

1

Γ(n− α)

dn

dxn

∫ s

a

(x− s)n−α−1f(s)ds,

if the integral on the right-hand side exists. Its right-sided Riemann-Liouville
fractional derivative of order α (based at x = b), denoted by R

xD
α
b f is defined by

R
xD

α
b f(x) =

(−1)n

Γ(n− α)

dn

dxn

∫ b

s

(s− x)n−α−1f(s)ds.

For n = 1 and 0 < α < 1, then the fractional left and right Riemann-Liouville
derivatives are

R
a D

α
xf(x) =

1

Γ(1− α)

d

dx

∫ x

a

(x− s)−αf(s)ds,

and

R
xD

α
b f(x) = − 1

Γ(1− α)

d

dx

∫ b

x

(s− x)−αf(s)ds.

Definition 3: For any f ∈ L(D), and n − 1 < α < n, n ∈ N, its left-sided
Djrbashian-Caputo fractional derivative C

a D
α
xf of order α based at x = a, is

defined by [17] as follows:

C
a D

α
xf(x) =

1

Γ(n− α)

∫ x

a

(x− s)n−α−1f (n)(s)ds,

if the integral on the right-hand side exists. Likewise, its right-sided Djrbashian-
Caputo fractional derivative C

x D
α
b f of order α based at x = b, is defined by [17]

as follows:

C
x D

α
b f(x) =

(−1)n

Γ(n− α)

∫ b

x

(s− x)n−α−1f (n)(s)ds.

For n = 1 and 0 < α < 1, then the fractional left and right Caputo derivatives
are

C
a D

α
xf(x) =

1

Γ(1− α)

∫ x

a

(x− s)−αf (′)(s)ds,

and

C
x D

α
b f(x) = − 1

Γ(1− α)

∫ b

x

(s− x)−αf (′)(s)ds.
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The relation between the fractional Riemann-Liouville derivative and frac-
tional Caputo derivative are

C
a D

α
t f(x) =

RL
a Dα

xf(x)−
n−1∑
k=0

f (k)(a)
(x− a)k−α

Γ(k − α+ 1)
.

and

C
x D

α
b f(x) =

RL
t Dα

b f(x)−
n−1∑
k=0

f (k)(a)
(b− x)k−α

Γ(k − α+ 1)
,

where n− 1 < α < n, n ∈ N.
Definition 4: The one parameter Mittag-Leffler function Eα which was intro-
duced by [1] as follows:

Eα(z) =

∞∑
n=0

zn

Γ(αn+ 1)
, z ∈ C, Re(α) > 0.

For 0 < α < 1, the Laplace transformation of the Caputo derivative C
a D

α
t f(t)

is defined as

L{Ca Dα
t f(t)} =

sF (s)− f(0)

s1−α
= sαF (s)− sα−1f(0).

The Laplace transformation of the one parameter Mittag-Leffler function Eα(λz
α)

is given by [1] as

L{Eα(λz
α)} =

sα−1

sα − λ
,

which means that

L−1{ sα−1

sα − λ
} = Eα(λz

α).

The properties of Laplace transformation and its inverse, applied to both the
Caputo derivative and the Mittag-Leffler function, may be used to determine
the analytical solution of the decay model (1). Let’s assume that the Laplace
transform of the function y(t) is denoted as Y (s). By applying the Laplace
transformation to both sides of equation 1, and using the linearity feature of the
Laplace transformation [18], we obtain

sαY (s)− sα−1y(0) = −λY (s).

Solving for Y (s) and substituting y0 instead of y(0) we find that

Y (s) =
y0s

α−1

sα + λ
.

By applying the inverse Laplace transform, we obtain

y(t) = y0L−1

{
sα−1

sα + λ

}
= y0Eα(−λtα).
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2.2. Methods. In this section, we develop NSFDM for solving the fractional
decay model. The exact solution of the fractional decay model 1 is given by

y(t) = y0Eα(−λtα), t > 0. (2)

Let N > 1 be a positive integer and h = T/N . Let xk = kh, k = 0, 1, ..., N .
The basis function of the exact solution is given by Eα(−λtα). Now, we follow
the Micken’s rules for constructing nonstandard finite difference schemes. We
construct the determinant ∣∣∣∣ yk Eα(−λtαk )

yk+1 Eα(−λtαk+1)

∣∣∣∣ = 0

from which we find:

yk+1Eα(−λtαk ) = ykEα(−λtαk+1) =⇒ yk+1 =
Eα(−λtαk+1)

Eα(−λtαk )
yk.

By subtracting yk from the two sides, multiplying and dividing the right-hand
side by −λ, we obtain

yk+1 − yk =

−λyk

(
Eα(−λtαk+1)

Eα(−λtαk ) − 1

)
−λ

=
1− Eα(−λtαk+1)

Eα(−λtαk )

λ
(−λyk)

from which we find that
yk+1 − yk

1−
Eα(−λtα

k+1
)

Eα(−λtα
k

)

λ

= −λyk.

Therefore, a suitable denominator function ϕk(λ, α, h) is defined in [tk, tk+1] as

ϕk(λ, α, h) =
1− Eα(−λtαk+1)

Eα(−λtαk )

λ
=

1− Eα(−(k+1)αλhα)
Eα(−kαλhα)

λ
.

Then, the proposed exact finite difference scheme is of the form

yk+1 − yk
ϕk(λ, α, h)

= −λyk (3)

which can be simplified into

yk+1 = (1− λϕ(λ, α, h)).yk, k = 0, 1, ..., N − 1. (4)

Thus, by using the numerical scheme (4), it is possible to produce numerical
solutions at the points x1, x2, ..., xN .

3. CONVERGENCE ANALYSIS OF THE PROPOSED SCHEME

3.1. CONSISTENCY OF THE NUMERICAL SCHEME. The local
truncation error LTEk of (3) is given by the form [21]

LTEk =
yk+1 − yk
ϕ(λ, h)

+ λyk. (5)
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By adding and subtracting the terms yk+1−yk
hα

Γ(1+α)

and αy(tk) to the right hand side

of (3.1) we obtain

|LTEk| ≤
∣∣∣∣y(tk+1)− y(tk)

ϕ(α, h)
− y(tk+1)− y(tk)

hα

Γ(1+α)

+

∣∣∣∣y(tk+1)− y(tk)
hα

Γ(1+α) )
+ λy(tk)

∣∣∣∣
≤

∣∣∣∣y(tk+1)− y(tk)

∣∣∣∣
∣∣∣∣∣ 1ϕ − 1

hα

Γ(1+α)

∣∣∣∣∣+
hαΓ(1+α)
Γ(1+2α)

2
|D2αy(ζ|. (6)

The quantity 1
ϕ − 1

hα

Γ(1+α)

is of O(1). Also, from Taylor expansion, |y(tk+1)−

y(tk)| = hα

Γ(1+α) ẏ(η), η ∈ [tk, tk+1], hence (6) becomes

|LTEk| ≤
hα

Γ(1 + α)

[
Dα

(
O(1)

)
+

D2αy(ζ)

2

]
(7)

where η, ζ ∈ (tk, tk+1).
From equation (7), we find that as h → 0, |LTEk| → 0 which proves the

consistency of the numerical scheme (3).

3.2. STABILITY OF THE NUMERICAL SCHEME. Let ek = y(tk) −
yk. We want to ascertain the conditions under which the proposed numerical
scheme is stable (i.e., ek → 0 as k → ∞) [21].

We have yk+1 = (1 − λϕ(λ, α, h)).yk. By substituting yk instead of yk in
equation (4) and subtracting equation (4) from the resulting equation we obtain:

ek+1 = (1− λϕ(λ, α, h)).ek. (8)

From equation (8) we have to obtain e1 = (1 − λϕ(λ, α, h)).e0, e2 = (1 −
λϕ(λ, α, h)).e1 = (1− λϕ(λ, α, h))2.e0. Generally, ek = (1− λϕ(λ, α, h))k.e0.
Now, ek → 0 as k → ∞ if and only if |1−λϕ(λ, α, h)| < 1. This latest inequality
can be expressed as:

e− 1 < 1− λϕ(λ, α, h) < 1 =⇒ 0 < ϕ(λ, α, h) <
2

λ
.

We then have

ϕ(λ, α, h) =
1− Eα(−(k+1)αλhα)

Eα(−kαλhα)

λ
Hence,

ϕ(λ, α, h) <
2

λ
≡

1− Eα(−(k+1)αλhα)
Eα(−kαλhα)

λ
<

2

λ

=⇒ −Eα(−(k + 1)αλhα)

Eα(−kαλhα)
< 1.

which is fulfilled always, regardless of the value of the step size h. Therefore,
the proposed numerical scheme is unconditionally stable.
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Finally, since the proposed scheme is both consistent and stable, it is conver-
gent [22].

4. RESULTS AND DISCUSSION

In this section, we utilize the proposed NSFDM on two examples of initial
value problems (IVPs) of Fractional Differential Equations (FDEs) obtained
from references [7] and [19]. We then proceed to compare it with the fractional
third order Runge-Kutta (RK3) scheme [7] and the fractional strong stability
preserving third order Runge-Kutta (SSRK3) [7]. The first example involves
solving a linear fractional differential equation (FDE) as an initial value prob-
lem (IVP), whereas the second example demonstrates the application of FDE.

Example 1 Consider the following linear IVP application of FDE [7]:

CDα
0.1+y = −y, 0.1 < x < 1, y(o.1) = Eα((−0.1)α).

The analytic solution of the above example is

y(x) = Eα(−xα).

Figure 1. Solution from NSFDM for Example 1 with step
size h = 1/10 and α = 1/2.

The proposed scheme with step size h = 1/10 and α = 1/2 was used to
calculate the corresponding infinity norm error. The last column of Table 1
provides an illustration of these errors.
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Table 1. Errors and orders of convergences obtained by two
fractional Runge-Kutta methods from the literature and the

proposed NSFDM.

IEM [7] SSRK3 [7] NSFDM
N Error Order Error Order Error

10 4.972e-03 - 8.461e-06 - 5.551e-17
20 1.285e-03 1.9523 1.125e-06 2.7265 1.110e-16
40 4.972e-03 1.9859 1.432e-07 2.9098 2.220e-16
80 8.130e-05 1.9963 1.822e-08 2.9750 2.220e-16
160 4.067e-05 0.9991 2.288e-09 2.9935 3.330e-16
320 2.034e-05 0.9998 2.863e-10 2.9984 5.551e-16
640 1.017e-05 0.9999 3.580e-11 2.9993 5.551e-16
1280 2.543e-06 2.0000 4.451e-12 3.0077 1.776e-15
2560 6.357e-07 2.0000 5.747e-13 2.9533 9.992e-16
5120 1.589e-07 2.0000 7.156e-14 3.00559 2.554e-15

The first 5 columns of Table 1 demonstrate the errors and convergence rates
achieved by two fractional Runge-Kutta techniques, namely the Implicit Euler
Method (IEM) and the Symmetric Splitting Runge-Kutta (SSRK) method [7].
The solutions generated by the proposed NSFDM were calculated and visually
compared to the actual solution, as shown in Figure 1.

Table 1 indicates that the suggested NSFDM yields almost exact solutions for
Example 1. However, when the value of N rises, so does the inaccuracy. This is
due to the accumulation of round-off mistakes caused by machine accuracy. It
is observed that the suggested NSFDM’s error for N = 10, 20, 40, , and 80 falls
within the precision of the machine, which is ϵ ≈ 2.2202260e−16 [20]. As N rises,
we see the influence of the round-off error for N = 160, 320, 640, 1280, 2560, and
5120. When we compare the performance of the suggested technique to the IEM
and SSRK3 found in [7], which have orders of convergence of 2 and 3, we can
observe how significantly superior the proposed NSDFM is.

Example 2 Consider the following time fractional radioactive decay equation
[7]:

CDα
0+N(t) = −λN(t), t > t0, N(t0) = N0

whose exact solution is

N(t) = N0Eα(−λtα), t > t0

In [19], this example was developed and explored in relation to the radioactiv-
ity of aluminum and silver, where experimental results indicated that an expo-
nential decay model fits the data well. In this model, the radioactive element’s
mean lifespan is denoted by τ , and λ = 1/τ . When λ = 0.0121, the traditional
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exponential decay model with α = 1 provided the best fit for λ. According to
[19], α = 0.8252 and λ = 0.0314 are the best fits for α and λ.

(a) λ = 0.0314 and α = 0.8252 (b) λ = 0.021 and α = 1.0

Figure 2. Solution from NSFDM for Example 2 with step
size h = 10 sec and α = 1/2.

Consequently, [7] examined two sets of parameters, λ and α, in order to solve
the model using fractional IEM and RK3 discretization techniques. The first set
consists of two elements: {λ = 0.0314, α = 0.8252}. In contrast, the second set
comprises two elements: {λ = 0.0121, α = 1.0}.Table 2 presents the analytical
solution of Example 2, as well as the solutions and errors found by the IEM, RK3,
and the suggested NSFD approach for the initial set of parameters λ = 0.0314
and α = 0.8252.

Table 2. Numerical solutions and errors obtained by the
IEM, RK3 and NSFDM, for λ = 0.0314, α = 0.8252 with step

size h = 10 sec

Analytical Solution[7] IEM [7] RK3[7] NSFDM
t(sec) NFrac NIEM Error NRK3 Error NNSFDM Error

0 1200.00 1200.00 0.000e+00 1200.00 0.000e+00 1200.00 0.000e+00
50 551.999 552.321 3.216e-01 552.160 1.608e-01 551.999 0.000e+00
100 326.316 326.690 3.734e-01 326.503 1.867e-01 333.282 5.684e-14
150 225.163 225.506 3.428e-01 225.334 1.714e-01 225.522 5.684e-14
200 164.801 165.105 3.043e-01 164.953 1.521e-01 164.974 8.526e-14
250 127.698 127.963 2.649e-01 127.831 1.324e-01 127.812 4.263e-14
300 103.296 103.527 2.311e-01 103.412 1.156e-01 103.410 5.684e-14
350 86.3853 86.5884 2.032e-01 86.4868 1.016e-01 86.4947 5.684e-14
400 74.1339 74.3144 1.804e-01 74.2241 9.019e-02 74.2345 2.842e-14
450 64.9211 65.0839 1.619e-01 65.0029 8.092e-02 65.0142 1.421e-14
500 57.7777 57.9244 1.467e-01 57.8510 7.329e-02 57.8629 1.421e-14

According to Table 2, the errors produced by the NSFDM approach are con-
sistently close to zero at all time points. In comparison, the errors obtained



Non-Standard Finite Difference Method... 705

by the fractional IEM and RK3 methods are significantly larger. The NSFDM
method demonstrates superior performance, as evidenced by the fact that the
infinity norm of the error for the IEM method and RK3 method is approximately
O(10−1), whereas for the NSFDM method it is approximately O(10−14). The
second set of parameters, λ = 0.0121 and α = 1.0, are used in Example 2 to
compare the analytical solution with the solutions and errors produced by the
IEM, SSRK3, and the suggested NSFDM techniques. The results are shown in
Table 3.

Table 3. Numerical solutions and errors obtained by the
IEM, RK3 and NSFDM , for λ = 0.0121, α = 1.0 with step size

h = 10 sec

Analytical Solution[7] IEM [7] SSRK3[7] NSFDM

t(sec) NFrac NIEM Error NSSRK3 Error NNSFDM Error

0 1200.00 1200.00 0.000e+00 1200.00 0.000e+00 1200.00 0.000e+00
50 655.289 552.321 3.216e-01 552.0156 1.608e-02 655.289 0.000e+00
100 357.837 326.690 3.734e-01 326.335 1.867e-02 357.837 5.684e-14
150 195.406 225.506 3.428e-01 225.180 1.714e-02 195.406 5.684e-14
200 106.706 165.105 3.043e-01 165.816 1.521e-02 106.706 0.000e+00
250 58.2694 127.963 2.649e-01 127.712 1.324e-02 58.2694 0.000e+00
300 31.8194 103.527 2.311e-01 103.307 1.155e-02 31.8194 3.553e-15
350 17.3758 86.5884 2.032e-01 86.3954 1.015e-02 17.3758 0.000e+00
400 9.48846 74.31438 1.804e-01 74.14301 9.015e-03 9.48847 0.000e+00
450 5.18141 65.0839 1.619e-01 64.9301 8.089e-03 5.18141 8.8821e-16
500 2.82943 57.9244 1.467e-01 57.7851 7.329e-02 2.82943 4.441e-16

Table 3 displays similar results to Table 2. It is evident that the errors
obtained by the NSFDM are extremely close to zero at all time points, in contrast
to the errors obtained by the fractional IEM and SSRK3 methods. The NSFDM
exhibits significantly superior performance, with the infinity norm of the IEM
error being on the order of O(10−1) and the SSRK3 method being on the order
of O(10−2), while the NSFDM is on the order of O(10−14). The graphs depicting
the answers for both sets are shown in Figure 2.

Conclusion

A nonstandard finite difference method for the fractional decay model’s solu-
tion was introduced in this work. Equidistant points divide the temporal space,
and the one-parameter Mittag-Leffler function—which serves as the basis func-
tion for the exact solution—is used to construct the denominator function. The
NSFD scheme that is produced is explicit. To demonstrate the effectiveness of
the suggested NSFDM through comparing it with the techniques mentioned in
[7], two examples from the literature were taken into consideration.

The findings of the NSFDM approach were compared with those of the IEM,
RK3, and SSRK3 methods in Table 1. The RK3 and SSRK3 had orders of
convergence of three, whereas the IEM had orders of convergence of two. The
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NSFDM solves Example 1; for small numbers of grid points, the outputs of the
solutions for different grid point values are within machine precision; neverthe-
less, round-off errors accumulate and reduce accuracy for large numbers of grid
points.

Tables 2 and 3 compare the performance of the NSFDM with the IEM, RK3,
and SSRK3 techniques while solving Example 2. The IEM and RK3 showed
errors of order O(10−1) at the infinity norm, the SSRK3 showed errors of order
O(10−2), and the NSFDM showed an error of order O(10−14).

Consequently, we may deduce from Tables 1, 2, and 3 that the recommended
NSFDM technique produces results that are almost exact, with small absolute
errors that lie close to or within the machine precision.

The paper’s principal contributions are as follows: The objective is to create
an explicit nonstandard finite difference scheme that possesses the same level of
complexity as the explicit Euler method. The solutions produced by the sug-
gested approach exhibit a high degree of precision, approaching or lying within
the machine precision. The method is unconditionally stable. It is rare to come
across explicit finite difference schemes that exhibit this characteristic.

We will benefit from and extend the nonstandard finite difference scheme pre-
sented in this paper to more difficult classes of fractional differential equations in
the future, such as systems of alpha-order FDEs, fractional differential equations
with nonlinear terms, and singularly perturbed fractional differential equations.
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