• Title/Summary/Keyword: erection process

Search Result 83, Processing Time 0.024 seconds

Load Leveling of Block Erection Network Using Diminution of Maximum Load Based on Constraint Satisfaction Technique (제약만족기법 기반의 최대부하감소를 통한 탑재 네크워크의 부하평준화)

  • Ryu, Ji-Sung;Kim, Hong-Tae;Park, Jin-H.;Lee, Byung-No;Shin, Jong-Gyu
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.41 no.5
    • /
    • pp.55-62
    • /
    • 2004
  • The logistics of entire shipbuilding process are integrated during the block erection process and the schedules for the erection process are made prior to. the schedules of any other processes. Therefore, efficient scheduling of the block erection process are one of most important issues in shipbuilding. There are only a few studies published regarding block erection scheduling methods because of its complexity and variability. This paper proposes an algorithm for diminution of maximum load based on constraint satisfaction technique. it is developed primarily for the efficiency in load leveling and applicability to the actual block erection process. The proposed algorithm is applied to actual block erection process and the results shows improvements in load leveling. It can also be used for the scheduling of fabrication, sub-assembly, and assembly to improve load leveling.

A Study on the Erection Process Modeling and Simulation considering Variability (변동성을 고려한 탑재프로세스 모델링과 시뮬레이션에 관한 연구)

  • Lim, Hyunkyu;Lee, Yonggil;Kim, Byungchul;Woo, Jonghun
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.53 no.2
    • /
    • pp.101-107
    • /
    • 2016
  • Generally, the shipbuilding industry has finite resources and limited workspace. Due to finite resources, limited workspace and state of block preparation, erection process in shipbuilding industry is frequently delayed than erection process scheduling which is planned at long-term plan stage. In this study, considering variability of block reserve ratio, the degree of delay in real erection process is measured and compared to scheduling which is planned at long-term plan stage in shipbuilding industry including finite capacity and variative lead time. Also, the erection process scheduling which has minimum lead time can be checked through simulation. The results of this study could be improved the accuracy of erection process scheduling by checking the main event compliance ratio by block reserve ratio and calculating the optimum erection pitch for the main event compliance.

A Development of Explicit Algorithm for Stress-Erection Analysis of STRARCH System (스트라치 시스템의 긴장응력해석을 위한 명시적 해석법의 개발)

  • Lee, Kyoung-Soo;Han, Sang-Eul
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.24 no.5
    • /
    • pp.513-520
    • /
    • 2011
  • In this paper, the advanced explicit algorithm is proposed to simulate the stress-erection process analysis of Strarch system. The Strarch(Stressed-Arch) system is a unique and innovative structural system and member prestress comprising prefabricated plane truss frames which are erected by a post-tensioning stress-erection procedure. The flexible bottom chord which have sleeve and gap detail are closed by the reaction force of prestressing tendon. The prestress imposing to the tendon will make the Strarch system to be erected. This post tensioning process is called as "stress-erection process". During the stress-erection process, the plastic rigid body rotation is occurred to the flexible top chord by the excessive amount of plastic strain, and the structural characteristic becomes to be unstable. In this study, the large deformational beam-column element with plastic hinge is used to model the flexible top chord, and the advanced Dynamic Relaxation method(DRM) are applied to the unstable problem of stress-erection process of Strarch system. Finally, the verification of proposed explicit algorithm is evaluated by analysing the stress-erection of real project of Strarch system.

Generation of Erection Sequence in Shipbuilding Process Planning (조선 공정계획에서 탑재 순서 생성)

  • Hong, Yoon-Gee;Jung, Eun-Kyung;Jun, Jin;Kim, Se-Young
    • IE interfaces
    • /
    • v.10 no.1
    • /
    • pp.189-207
    • /
    • 1997
  • This paper explains a way of describing the erection sequence using the connecting relationship among blocks of a hull in shipbuilding industry. The information of the adjacent blocks such as upper, lower, right, left, front, rear, and their erection status, etd., is defined and the proper use of this allows us to determine one of the possible erection sequences. The methodology suggested also includes some useful benefits of avoiding insert blocks or maintaining stability in erection process. Further, an algorithm for generating the initial erection network is shown and this network may be a basis for designing daily erection scheduling. Some examples illustrate the procedure developed in this study and the results support the model's fidelity.

  • PDF

Prototype of Block Tracing System for Pre-Erection Area using PDA and GPS (PDA 및 GPS를 이용한 옥외 작업장 블록 위치 추적 시스템 개발)

  • Shin, Jong-Gye;Lee, Jang-Hyun
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.43 no.1 s.145
    • /
    • pp.87-95
    • /
    • 2006
  • There are hundreds of ship blocks which are under the block assembly, painting, and outfitting assembly works in the pre-erection shops of shipyard. Generally, each block is planned to be processed in a pre-erection shop according to the block type by the long-term production-scheduling before six months. However, many blocks can't be processed in the planned time and the planned shop since the before and after block-processing changes or delays the planned sequential works in pre-erection shops. Therefore, it is essential to monitor the current location of each block and work in process to cope with the changed situation of pre-erection shops. Present study integrates PDA, GPS, and CDMA not only to chase the location of each block but also to exchange the pre-erection work order and the work report between the production-scheduling server and the production managers in the pre-erection shops. This study shows a prototype for the block tracing and process monitoring in the pre-erection shops.

Construction of Cable Staying Roof Structure of Jeju Worldcup Stadium (제주월드컵경기장 지붕지지 케이블의 시공)

  • Lee, Ju-Young;Kim, Chan-Soo
    • Journal of Korean Association for Spatial Structures
    • /
    • v.2 no.4 s.6
    • /
    • pp.37-44
    • /
    • 2002
  • The cable staying roof structure of Jeju worldcup stadium should be erected with correct prestressed force that is required by the structural engineer who designs this structure. This study evaluated and adapted the erection process of cable, the erection force and the measurement of cable force for Jeju worldcup stadium. The process of erection is required not only to calculate erection force but also to check structural stability, following process, construction period and using cranes. Considering the site conditions and technical problems, this study can attain successfully the erection of cable staying roof structure of Jeju worldcup stadium with allowable errors.

  • PDF

Erection Process Planning & Scheduling using Genetic Algorithm (유전 알고리즘을 이용한 탑재 공정과 일정 계획)

  • J.W. Lee;H.J. Kim
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.32 no.1
    • /
    • pp.9-16
    • /
    • 1995
  • The erection process planning is to decide erection strategy and sequence that satisfies dock duration. The erection scheduling is to decide erection date of each block. The load profile varies according to scheduling and it is related to building cost. It must be possible to simulate the various combinations of process plan and schedule for optimal planning. To develop the process planning system for optimal planning, the system that generate the sequence of erection automatically and the load leveling system are required. This paper suggests the method that generates the erection sequence. The load leveling should be done to all the ships in the same dock batch to get reliable results. In this case since the search space is very large, efficient optimization method is needed Our research achieved the load leveling system using Genetic Algorithm. This system made it possible to simulate various process plans to which schedule is considered.

  • PDF

Flutter stability of a long-span suspension bridge during erection

  • Han, Yan;Liu, Shuqian;Cai, C.S.;Li, Chunguang
    • Wind and Structures
    • /
    • v.21 no.1
    • /
    • pp.41-61
    • /
    • 2015
  • The flutter stability of long-span suspension bridges during erection can be more problematic and more susceptible to be influenced by many factors than in the final state. As described in this paper, numerical flutter stability analyses were performed for the construction process of Zhongdu Bridge over Yangtze River using the commercial FE package ANSYS. The effect of the initial wind attack angle, the sequence of deck erection, the stiffness reduction of stiffening girders, the structural damping, and the cross cables are discussed in detail. It was found that the non-symmetrical sequence of deck erection was confirmed to be aerodynamically favourable for the deck erection of long-span suspension bridges and the best erection sequence should be investigated in the design phase. While the initial wind attack angle of $-3^{\circ}$ is advantageous for the aerodynamic stability, $+3^{\circ}$ is disadvantageous compared with the initial wind attack angle of $0^{\circ}$ during the deck erection. The stiffness reduction of the stiffening girders has a slight effect on the flutter wind speed of the suspension bridge during erection, but structural damping has a great impact on it, especially for the early erection stages.

A Genetic Algorithm Application for the Load Balancing of Ship Erection Process (조선 탑재일정의 부하 평준화를 위한 유전 알고리듬)

  • Min, Sang-Gyu;Moon, Chi-Ung;Lee, Min-Woo;Chung, Kuy-Hoon;Park, Ju-Chull
    • IE interfaces
    • /
    • v.13 no.2
    • /
    • pp.225-233
    • /
    • 2000
  • In this paper, we develope a genetic algorithm for the erection scheduling in shipbuilding. Erection, the final manufacturing stage of shipbuilding, involves the landing and joining of blocks at drydock. Since several ships are built simultaneously at the same drydock and they compete with the common constrained production resource such as labor, space, and crane, we should consider both ship-specifics and common resource constraints for the desirable erection scheduling. Ship erection should also satisfy the predetermined dock cycle given from higher level production planning. Thus, erection schedule of a ship can be represented as a PERT/CPM project network with its own deadline. Since production resources are shared, the erection scheduling become the so-called multi-project scheduling problem with limited resources, which can not be solved easily due to the large size of project network. We propose a function as a minimization of load index which represented the load deviation over time horizon considering the yard production strategy. For the optical parameter setting, we tried various experiments. We verified that the proposed approach was effective to deal with the erection scheduling problem in shipbuilding.

  • PDF

Construction of Cable Roof Structure for Pusan Main Stadium (부산종합운동장 주경기장 케이블 지붕구조물의 시공)

  • Lee, Ju-Young;Ryu, Sang-Hyon
    • Journal of Korean Association for Spatial Structures
    • /
    • v.2 no.1 s.3
    • /
    • pp.51-58
    • /
    • 2002
  • Construction of roof structure, cable suspended structure, for Pusan main stadium is adapted a lifting method that is VSL lifting system. 5 processes are practiced for erection of the roof structure including the first lifting process for erection of upper cables and the second lifting process for erection of lower cables. Since all cables of this roof structure with two open spelter sockets are determined their length, some cable were wrong length, he roof structure would be unstable. But, At complete of erection for the roof structure each cable is attained to theoretical tension force with average 4% errors.

  • PDF