• Title/Summary/Keyword: equations of motion

Search Result 2,321, Processing Time 0.035 seconds

CONTROLLABILITY OF STOCHASTIC FUNCTIONAL INTEGRODIFFERENTIAL EVOLUTION SYSTEMS

  • Kokila, J.;Balachandran, K.
    • Journal of applied mathematics & informatics
    • /
    • v.29 no.3_4
    • /
    • pp.587-601
    • /
    • 2011
  • In this paper, we prove the existence and uniqueness of mild solution for stochastic functional integrodifferential evolution equations and derive sufficient conditions for the controllability results. As an illustration we consider the controllability for a system governed by a random motion of a string.

SINGULAR PERIODIC SOLUTIONS OF A CLASS OF ELASTODYNAMICS EQUATIONS

  • Yuan, Xuegang;Zhang, Yabo
    • Journal of applied mathematics & informatics
    • /
    • v.27 no.3_4
    • /
    • pp.501-515
    • /
    • 2009
  • A second order nonlinear ordinary differential equation is obtained by solving the initial-boundary value problem of a class of elas-todynamics equations, which models the radially symmetric motion of a incompressible hyper-elastic solid sphere under a suddenly applied surface tensile load. Some new conclusions are presented. All existence conditions of nonzero solutions of the ordinary differential equation, which describes cavity formation and motion in the interior of the sphere, are presented. It is proved that the differential equation has singular periodic solutions only when the surface tensile load exceeds a critical value, in this case, a cavity would form in the interior of the sphere and the motion of the cavity with time would present a class of singular periodic oscillations, otherwise, the sphere remains a solid one. To better understand the results obtained in this paper, the modified Varga material is considered simultaneously as an example, and numerical simulations are given.

  • PDF

A Motion Compression Method by Min S-norm Composite Fuzzy Relational Equations

  • Nobuhara, Hajime;Hirota, Kaoru
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2003.09a
    • /
    • pp.488-491
    • /
    • 2003
  • A motion compression method by min s-norm composite fuzzy relational equations (dual-MCF) is proposed, where a motion sequence is divided into intra-pictures (I-pictures) and predictive-pictures (P-pictures). The I-pictures and the P-pictures are compressed by using uniform coders and non-uniform coders, respectively. A design method of non-uniform coders is proposed to perform an efficient compression and reconstruction of the P-pictures, based on the dual overlap level of fuzzy sets and a fuzzy equalization. An experiment using 10 P-pictures confirms that the root means square errors of the proposed method is decreased to 82.9% of that of the uniform coders, under the condition that the compression rate is 0.0055. An experiment of motion compression and reconstruction is also presented to confirm the effectiveness of the dual-MCF based on the non-uniform coders.

  • PDF

Random Analysis of Rolling Equation of Motion of Ships Based on Moment Equation Method (모멘트 방정식 방법에 의한 횡요 운동 방정식의 램덤 해석)

  • 배준홍;권순홍;하동대
    • Journal of Ocean Engineering and Technology
    • /
    • v.6 no.2
    • /
    • pp.41-45
    • /
    • 1992
  • In this paper an application technique of moment equation method to solution of nonlinear rolling equation of motion of ships is investigated. The exciting moment in the equation of rolling motion of ships is described as non-white noise. This non-white exciting moment is generated through use of a shaping filter. These coupled equations are used to generate moment equations. The nonstationary responses of the nonlinear system are obtained. The results are compared with those of a linear system.

  • PDF

Analytic study of a new conceptual propulsion device for ships

  • Muscia, Roberto;Sciuto, Giacomo
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.2 no.2
    • /
    • pp.75-86
    • /
    • 2010
  • In this work the possibility of obtaining a rectilinear motion of bodies partially or totally submerged without using propellers is evaluated. The system propulsion is based on a pair of counter rotating masses that generate the thrust. The fluid-body system has been schematized in order to carry out a very simple model. Using this model an evaluation of the body motion along a longitudinal direction was performed. The motion equations of the system were written and integrated. The external forces applied to the body depend on its velocity in relation to the water. These forces were obtained by fluid dynamic simulations. Regarding the mechanical configuration suggested, the results obtained show that a certain displacement of the body along a fixed direction is obtainable.

Elastic Wave Propagation in Monoclinic System Due to Transient Line Load

  • Kim, Yong-Yun
    • The Journal of the Acoustical Society of Korea
    • /
    • v.17 no.2E
    • /
    • pp.53-58
    • /
    • 1998
  • In this paper, we study the response of several anisotropic systems to buried transient line loads. The problem is mathematically formulated based on the equations of motion in the constitutive relations. The load is in form of a normal stress acting with arbitrary axis on the plane of monoclinic symmetry. Plane wave equation is coupled with vertical shear wave, longitudinal wave and horizontal shear wave. We first considered the equation of motion in reference coordinate system, where the line load is coincident with symmetry axis of the orthotrioic material. Then the equation of motion is transformed with respect to general coordiante system with azimuthal angle by using transformation tensor. The load is first described as a body force in the equations of the motion for the infinite media and then it is mathematically characterized. Subsequently the results for semi-infinite spaces is also obtained by using superposition of the infinite medium solution together with a scattered solution from the free surface. Consequently explicit solutions for the displacements are obtained by using Cargniard-DeHoop contour. Numerical results which are drawn from concrete examples of orthotropic material belonging to monoclinic symmetry are demonstrated.

  • PDF

유한요소법을 이용한 유연로보트팔 운동방정식의 정식화

  • 김창부;유영선
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2001.10a
    • /
    • pp.233-238
    • /
    • 2001
  • In the design and operation of robot arms with flexible links, the equations of motion are required to exactly model the interaction between rigid motion and elastic motion and to be formulated efficiently. Thus, the flexible link is represented on the basis of the D-H rigid link represented to measure the elastic deformation. The equations of motion of robot arms, which are configured by the generalized coordinates of elastic and rigid degrees of freedom, are formulated by using F.E.M to model complex shaped links systematically and by eleminating elastic mode of higher order that does not largely affect option to reduce the number of elastic degree of freedom. Finally presented is the result of simulation to flexible robotic arm whose joints are controlled by direct or PD control.

Analysis of Instantaneous Screw Axis in 5-SS Multi-link Suspensions Using Line Geometry (선 기하학을 이용한 5-SS 멀티 링크 현가장치의 순간 스크류 축 해석)

  • Choi, Jai-Seong;Shim, Jae-Kyung
    • Proceedings of the KSME Conference
    • /
    • 2000.11a
    • /
    • pp.635-640
    • /
    • 2000
  • This paper presents the analysis method of the instantaneous screw axis using line geometry in bump and rebound motion of 5-SS multi-link suspensions. Instantaneous screw axis is based on screw motion, and screw motion of zero pitch can be expressed as $Pl{\ddot{u}}cker$ line coordinates of line geometry instead of screw coordinates. In screw coordinates, twist and wrench are described by components of instantaneous screw axis. For instantaneous motion of wheel assembly, the principle of virtual work with twist and wrench is applied to 5-SS multi-link suspension, and it makes 5 linear equations. Therefore, it is possible to find instantaneous screw axis by solving these equations. This analysis by line geometry demands geometric values only, such as the locations of spherical joints in the case of multi-link suspensions.

  • PDF

Compensation of Image Motion Effect Through Augmented Transformation Equation

  • Ghosh, Sanjib K.
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.1 no.2
    • /
    • pp.23-29
    • /
    • 1983
  • Degradation of image caused by relative motion between the object and the imaging system (like a camera with its platform) is detrimental to precision photogrammetry. Principal modes of relative motion are identified. The discussion is, however, concentrated on the systematic motions, translatory and rotatory. Various analogical approaches of compensating for the image motion are cited. An analytical-computational approach is presented. This one considers the relationship of transformation bet ween the image and the object, known as the collinearity condition. The standard forms of collinearity condition equations are presented. Augmentation of these equations with regard to both translatory and rotatory motions are expounded. With ever increasing use of high speed computers (as well as analytical plotters in the realm of photogrammetry), this approach seems to be more costeffective and seems to yield better precision in the long run than other approaches that concentrate on analogical corrections to the image itself.

  • PDF

Inverse Kinematic and Dynamic Analyses of 6-DOF PUS Type parallel Manipulators

  • Kim, Jong-Phil;Jeha Ryu
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.1
    • /
    • pp.13-23
    • /
    • 2002
  • This paper presents inverse kinematic and dynamic analyses of HexaSlide type six degree-of-freedom parallel manipulators. The HexaSlide type parallel manipulators (HSM) can be characterized as an architecture with constant link lengths that are attached to moving sliders on the ground and to a mobile platform. In the inverse kinematic analyses, the slider and link motion (position, velocity, and acceleration) is computed given the desired mobile platform motion. Based on the inverse kinematic analysis, in order to compute the required actuator forces given the desired platform motion, inverse dynamic equations of motion of a parallel manipulator is derived by the Newton-Euler approach. In this derivation, the joint friction as well as all link inertia are included. Relative importance of the link inertia and joint frictions on the computed torque is investigated by computer simulations. It is expected that the inverse kinematic and dynamic equations can be used in the computed torque control and model-based adaptive control strategies.