• Title/Summary/Keyword: enamel matrix derivative(EMD)

Search Result 14, Processing Time 0.022 seconds

Enamel matrix derivative for replanted teeth in animal models: a systematic review and meta-analysis

  • Kim, Sahng G.;Ryu, Steven I.
    • Restorative Dentistry and Endodontics
    • /
    • v.38 no.4
    • /
    • pp.194-203
    • /
    • 2013
  • Objectives: To investigate the effect of enamel matrix derivative (EMD) on periodontal healing of replanted teeth in animal models. Materials and Methods: The authors searched MEDLINE, PubMed, EMBASE, Cochrane Library, Web of Knowledge and Scopus for articles published up to Oct 2012. Animal studies in which EMD was applied in transplanted or replanted teeth with adequate controls and histological data were considered. Normal periodontal healing or root resorption determined by histology after EMD was applied in replanted teeth with adequate controls was used as outcome measures. The following search strategy was used: ('Emdogain' OR 'enamel matrix proteins' OR 'enamel matrix derivative') AND ('avulsion' OR 'transplantion' OR 'autotransplantation' OR 'replantation'). Results: Six animal studies were included in the final review. There was great heterogeneity in study design among included studies. Two studies with similar study designs were identified and analyzed by a meta-analysis. The pooled estimates showed a significantly higher normal healing and surface resorption and significantly less inflammatory and replacement resorption in EMD-treated groups compared with non-EMD-treated groups. Conclusions: With the limitations of this systematic review, the use of EMD led to greater normal periodontal healing and surface root resorption and less inflammatory and replacement root resorption in the presence of periodontal ligaments. However, no definite conclusion could be drawn with regard to the effect of EMD on periodontal healing and root resorption when no periodontal ligaments exist.

AUTOTRANSPLANTATION OF AN IMPACTED MAXILLARY PREMOLAR USING ENAMEL MATRIX DERIVATIVE: A CASE REPORT (역위 매복된 상악 소구치의 Enamel matrix derivative를 이용한 자가이식 치험례)

  • Oh, You-Hyang;Lee, Nan-Young;Lee, Chang-Seop;Lee, Sang-Ho
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.30 no.3
    • /
    • pp.471-476
    • /
    • 2003
  • The success of autotransplantation depends on the viability of periodontal ligament in the transplanted tooth. Mechanical injury to periodontal tissues frequently results in dental root resorption and ankylosis, which leads to the failure of transplantation. Enamel matrix derivative(EMD) Which contains several enamel matrix protein (amelogenin family) has been reported to be effective in some periodontal therapies has been recently used to induce periodontal regeneration. EMD promotes proliferation of periodontal ligament cells and is suggested to be useful for transplantation. In this case, we report a clinical case of EMD application in the transplantation of an impacted and immature tooth of a 14 year-old girl to enhance the periodontal regeneration.

  • PDF

The effects of bone morphogenetic protein-2 and enamel matrix derivative on the bioactivity of mineral trioxide aggregate in MC3T3-E1cells

  • Jeong, Youngdan;Yang, Wonkyung;Ko, Hyunjung;Kim, Miri
    • Restorative Dentistry and Endodontics
    • /
    • v.39 no.3
    • /
    • pp.187-194
    • /
    • 2014
  • Objectives: The effects of bone morphogenetic protein-2 (BMP-2) and enamel matrix derivative (EMD) respectively with mineral trioxide aggregate (MTA) on hard tissue regeneration have been investigated in previous studies. This study aimed to compare the osteogenic effects of MTA/BMP-2 and MTA/EMD treatment in MC3T3-E1 cells. Materials and Methods: MC3T3-E1 cells were treated with MTA (ProRoot, Dentsply), BMP-2 (R&D Systems), EMD (Emdogain, Straumann) separately and MTA/BMP-2 or MTA/EMD combination. Mineralization was evaluated by staining the calcium deposits with alkaline phosphatase (ALP, Sigma-Aldrich) and Alizarin red (Sigma-Aldrich). The effects on the osteoblast differentiation were evaluated by the expressions of osteogenic markers, including ALP, bone sialoprotein (BSP), osteocalcin (OCN), osteopontin (OPN) and osteonectin (OSN), as determined by reverse-transcription polymerase chain reaction analysis (RT-PCR, AccuPower PCR, Bioneer). Results: Mineralization increased in the BMP-2 and MTA/BMP-2 groups and increased to a lesser extent in the MTA/EMD group but appeared to decrease in the MTA-only group based on Alizarin red staining. ALP expression largely decreased in the EMD and MTA/EMD groups based on ALP staining. In the MTA/BMP-2 group, mRNA expression of OPN on day 3 and BSP and OCN on day 7 significantly increased. In the MTA/EMD group, OSN and OCN gene expression significantly increased on day 7, whereas ALP expression decreased on days 3 and 7 (p < 0.05). Conclusions: These results suggest the MTA/BMP-2 combination promoted more rapid differentiation in MC3T3-E1 cells than did MTA/EMD during the early mineralization period.

Effects of enamel matrix derivative and titanium on the proliferation and differentiation of osteoblasts (법랑기질유도체를 도포한 타이태늄 표면에서 조골세포의 증식 및 분화)

  • Park, Sang-Hyun;Lee, In-Kyeong;Yang, Seung-Min;Shin, Seung-Yun;Lee, Yong-Moo;Ku, Young;Rhyu, In-Chul;Chung, Chong-Pyoung;Han, Soo-Boo;Choi, Sang-Mook
    • Journal of Periodontal and Implant Science
    • /
    • v.33 no.3
    • /
    • pp.359-372
    • /
    • 2003
  • Among objectives of periodontal therapy. the principal one is the morphological and functional reconstruction of lost periodontal supporting tissues. This includes de novo formation of connective tissue attachment and the regrowth of alveolar bone. The use of enamel matrix derivative(EMD) may be a suitable means of regeneration new periodontal attachment in the infrabony defects. Implant used to replace lost tooth but, implantitis occurred after installation. The purpose of this study was to investigate the effects of EMD on differentiation and growth of osteoblast in titanium disc. Twentyfive millimeter diameter and 1mm thick Ti disc which was coated 25, 50, 100, 200${\mu}g$/ml of EMD(Emdogain(R)) used as experimental group, 25, 50, 100, 200ng/d of rhBMP-2 as positive control group, and no coat as negative control group. A human osteosarcoma cell line Saos-2 was cultured in Ti disc and cell proliferation and Alkaline phosphatase (ALP) activity were measured at 1 and 6 days. PCR was performed at 2 and 8 hours. Semi-quantitative RT-PCR for mRNA expressions of various osteoblastic differentiation markers -type I collagen, ALP, osteopontin, and bone sialoprotein - were performed at appropriate concentrations based upon the results of MTT and ALP assay. Cultured cell-disc complexes were prepared for scanning electron microscopy (SEM) at 2 hour. Data were analyzed using Mann-Whitney and repeated- measures 1-way analysis of variance(SPSS software version 10,SPSS. Chicago. IL). After culture, there was more osteoblast in EMD100${\mu}g$/ml than in EMD50, 200${\mu}g$/ml on day 6. There was significant difference in experimental and positive control group compared control group, as times go by(1 and 6 days). Alkaline phosphatase activity was different significantly in EMD100, 200${\mu}g$/ml and BMP100, 200${\mu}g$/ml on day 6. The results of reverse transcriptase-polymerase chain reaction (RT-PCR) showed that expression of mRNA for ALPase, collagen type I, osteopontin. hone sialoprotein and BMP-2 was detected at 2 hour and 8 hour in EMI 200${\mu}g$/ml subgroup and BMP100ng/ml subgroup. The results of this study suggest that application of enamel matrix derivative on osteoblast attached to titanium surface facilitate the expression of bone specific protein and the differentiation and growth of osteoblast.

Cellular viability and genetic expression of human gingival fibroblasts to zirconia with enamel matrix derivative ($Emdogain^{(R)}$)

  • Kwon, Yong-Dae;Choi, Hyun-Jung;Lee, Heesu;Lee, Jung-Woo;Weber, Hans-Peter;Pae, Ahran
    • The Journal of Advanced Prosthodontics
    • /
    • v.6 no.5
    • /
    • pp.406-414
    • /
    • 2014
  • PURPOSE. The objective of this study was to investigate the biologic effects of enamel matrix derivative (EMD) with different concentrations on cell viability and the genetic expression of human gingival fibroblasts (HGF) to zirconia surfaces. MATERIALS AND METHODS. Immortalized human gingival fibroblasts (HGF) were cultured (1) without EMD, (2) with EMD $25{\mu}g/mL$, and (3) with EMD $100{\mu}g/mL$ on zirconia discs. MTT assay was performed to evaluate the cell proliferation activity and SEM was carried out to examine the cellular morphology and attachment. The mRNA expression of collagen type I, osteopontin, fibronectin, and TGF-${\beta}1$ was evaluated with the real-time polymerase chain reaction (RT-PCR). RESULTS. From MTT assay, HGF showed more proliferation in EMD $25{\mu}g/mL$ group than control and EMD $100{\mu}g/mL$ group (P<.05). HGFs showed more flattened cellular morphology on the experimental groups than on the control group after 4h culture and more cellular attachments were observed on EMD $25{\mu}g/mL$ group and EMD $100{\mu}g/mL$ group after 24h culture. After 48h of culture, cellular attachment was similar in all groups. The mRNA expression of type I collagen increased in a concentration dependent manner. The genetic expression of osteopontin, fibronectin, and TGF-${\beta}1$ was increased at EMD $100{\mu}g/mL$. However, the mRNA expression of proteins associated with cellular attachment was decreased at EMD $25{\mu}g/mL$. CONCLUSION. Through this short term culture of HGF on zirconium discs, we conclude that EMD affects the proliferation, attachment, and cell morphology of HGF cells. Also, EMD stimulates production of extracellular matrix collagen, osteopontin, and TGF-${\beta}1$ in high concentration levels. CLINICAL RELEVANCE. With the use of EMD, protective barrier between attached gingiva and transmucosal zirconia abutment may be enhanced leading to final esthetic results with implants.

Treatment of Palatogingival Groove using Glass-Ionomer cement and Emdogain$^{(R)}$ (Original Article 2 - 글라스-아이오노머 시멘트와 Emdogain$^{(R)}$을 이용한 구개치은발육구의 치료)

  • Jin, Myoung-Uk
    • The Journal of the Korean dental association
    • /
    • v.48 no.1
    • /
    • pp.56-62
    • /
    • 2010
  • In recent years, a number of special treatment procedures have been introduced to reestablish new tooth supporting tissues with varying degrees of success including guided tissue regeneration(GTR), bone grafting(BG) and the use of enamel matrix derivative(EMD). EMD is an extract of enamel matrix and contains amelogenins of various molecular weights. Emdogain(EMD) might have some advantages over other methods of regenerating the tissue supporting teeth lost by gum disease, such as less postoperative complications. Emdogain contains proteins(derived from developing pig teeth) believed to regenerate tooth attachment. The decrease in probing depth after EMD treatment is achieved primarily by clinical attachment gain and bone regeneration and only to a minor extent by gingival recession. In conclsion, EMD seems to be safe, was able to regenerate lost periodontal tissues in previously diseased sites based on clinical parameters.

Effect of Enamel Matrix Drivatives application on the expression of PDLs17, PDLs22 of cultured human periodontal ligament cells in vitro (Enamel Matrix Derivatives가 사람 치주인대 세포의 특이유전자인 PDLs17, PDLs22의 발현에 끼치는 효과)

  • Han, Geun-A;Jang, Hyun-seon;Kok, Jung-Ki;Park, Ju-Chol;Kim, Heoung-Jung;Kim, Jung-Gwan;Kim, Byung-Ock
    • Journal of Periodontal and Implant Science
    • /
    • v.34 no.2
    • /
    • pp.333-344
    • /
    • 2004
  • The enamel matrix derivative (EMD) has been recently used in the periodontal regenerative techniques. The present study was established to investigate the influence of EMD on human periodontal ligament cells using expression of mRNA of periodontal ligament specific gene (PDLs)17, PDLs22, type I collagen when EMD applied to periodontal ligament cells. Periodontal ligament cells were obtained from a healthy periodontium and cultured in Dulbecco's modified Eagle's medium (DMEM) plus 10% fetal bovine serum and ${\beta}-glycerophosphate$ with ascorbic acid. Test groups were two; One adds EMD in culture media and another added EMD and Dexamethasone (DEX) in culture media. Positive control group added DEX in culture media, and negative control group adds niether of EMD nor DEX. $Emdogain^{(R)}$ (Biora, Sweden, 30 mg/ml) was diluted by 75 ${\mu}g/ml$ concentration to culture media. For reverse transcription-polymerase chain reaction (RT-PCR), total RNA isolated on days 0, 7, 14 and 21. mRNA of PDLs17 was expressed on days 14 and 21 in EMD or DEX group, and expressed on days 7, 14 and 21 in EMD plus DEX group, the other side, expressed on days 21 in negative control group. mRNA of PDLs22 expressed on days 7, 14 and 21 in EMD group, and expressed on days 14 and 21 in DEX group, and expressed on days 7, 14 and 21 in EMD plus DEX group. Negative control group expressed on days 14 and 21. Type I collagen was expressed on all days and all groups. These results indicate that EMD promotes differentiation of periodontal ligament cells, and this is considered to offer basis that can apply EMD to periodontal tissue regeneration technique.

EFFECT OF ENAMEL MATRIX DERIVATIVE (EMD, $EMDOGAIN^{(R)}$) ON THE DIFFERENTIATION OF CULTURED HUMAN PERIODONTAL LIGAMENT CELLS AND MESENCHYMAL STEM CELLS (배양된 사람 치주인대세포와 골수유래간엽줄기세포의 분화에 미치는 법랑기질유도체 (Enamel Matrix Derivative, EMD)의 영향)

  • Park, Sang-Gyu;Jue, Seong-Suk;Kwon, Yong-Dae;Choi, Byung-Joon;Kim, Young-Ran;Lee, Baek-Soo
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.31 no.4
    • /
    • pp.281-286
    • /
    • 2009
  • Introduction: Enamel matrix derivative (EMD) is a protein which is secreted by Hertwig root sheath and plays a major role in the formation of cementum and attachment of peridontium. Several studies have shown that EMD promoted the proliferation and differentiation of preosteoblasts, osteoblasts and periodontal ligament cells in vitro: however, reports showing the inhibition of osteogenic differentiation by EMD also existed. This study was designed to simultaneously evaluate the effect of EMD on the two cell lines (human mesenchymal stem cells: hMSC, human periodontal ligament derived fibroblasts: hPDLCs) by means of quantitative analysis of some bone related matrices (Alkaline phosphatase : ALP, osteopontin ; OPN, osteocalcin ; OC). Materials and Methods: hMSCs and hPDLCs were expanded and cells in the 4${\sim}$6 passages were adopted to use. hMSc and hPDLCs were cultured during 1,2,7, and 14 days with 0, 50 and 100 ${\mu}g/ml$ of EMD, respectively. ALP activity was assessed by SensoLyte ALP kit and expressed as values of the relative optical density. Among the matrix proteins of the bony tissue, OC and OPN were assessed and quantification of these proteins was evaluated by means of human OC immunoassay kit and human OPN assay kit, respectively. Results: ALP activity maintained without EMD at $1,2^{nd}$ day. The activity increased at $7^{th}$ day but decreased at $14^{th}$ day. EMD increased the activity at $14^{th}$ day in the hPDLCs culture. In the hMSCs, rapid decrease was noted in $7^{th}$ and $14^{th}$ days without regard to EMD concentrations. Regarding the OPN synthesis in hPDLCs, marked decrease of OPN was noted after EMD application. Gradual decrease tendency of OPN was shown over time. In hMSCs, marked decrease of OPN was also noted after EMD application. Overall concentration of OPN was relatively consistent over time than that in hPDLCs. Regarding the OC synthesis, in both of hPDLCs and hMSCs, inhibition of OC formation was noted after EMD application in the early stages but EMD exerted minimal effect at the later stages. Conclusion: In this experimental condition, EMD seemed to play an inhibitory role during the differentiation of hMSCs and hPDLCs in the context of OC and OPN formation. In the periodontium, there are many kinds of cells contributing to the regeneration of oral tissue. EMD enhanced ALP activity in hPDLCs rather than in hMSCs and this may imply that EMD has a positive effect on the differentiation of cementoblasts compared with the effect on hMSCs. The result of our research was consistent with recent studies in which the authors showed the inhibitory effect of EMD in terms of the differentiation of mineral colony forming cells in vitro. This in vitro study may not stand for all the charateristics of EMD; thus, further studies involving many other bone matrices and cellular attachment will be necessary.

Additional use of autogenous periosteal barrier membrane combined with regenerative therapy in the interproximal intrabony defects: case series (치간부 골내낭의 치주재생치료에서 골막이식의 부가적 사용 증례)

  • Kim, Hyun-Joo;Kim, Hyung-min;Lee, Ju-Youn
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.33 no.3
    • /
    • pp.230-237
    • /
    • 2017
  • Regenerative therapy in an interproximal intrabony defect is a challenge due to unaesthetic appearance after surgery. In this article, we introduce a case series of additional use of autogenous periosteal barrier membrane combined with bovine bone mineral and enamel matrix derivative (EMD) in interproximal periodontal intrabony defects to overcome an aforementioned shortcoming. During the periodontal regenerative surgery, autogenous periosteal membrane was additionally adopted besides xenograft material and EMD. Clinical and radiographic examinations were performed before surgery and 6 months after surgical treatment. All clinical parameters were improved and the intrabony defects were resolved on the radiography 6 months after surgery. Moreover, soft tissue esthetics such as the contour of interdental papilla was better than that of conventional regenerative therapy. Periodontal regenerative therapy using several graft materials and bioactive materials was effective in the treatment of periodontal intrabony defect. Moreover, using of autogenous periosteal barrier membrane combined with xenograft and EMD has additional effect for the treatment of an interproximal intrabony defect in terms of augmentation of interdental soft tissue volume.

Microbiological and clinical effects of enamel matrix derivative and sustained-release micro-spherical minocycline application as an adjunct to non-surgical therapy in peri-implant mucosal inflammation

  • Faramarzi, Masumeh;Goharfar, Zahra;Pourabbas, Reza;Kashefimehr, Atabak;Shirmohmmadi, Adileh
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.41 no.4
    • /
    • pp.181-189
    • /
    • 2015
  • Objectives: The purpose of this study was to compare the microbial and clinical effects of mechanical debridement (MD) alone or in combination with the application of enamel matrix derivative (EMD) and sustained-release micro-spherical minocycline (MSM) for treatment of peri-implant mucosal inflammation (PIMI). Materials and Methods: Subjects with at least one implant with PIMI were included and divided into control and two different test groups. In all three groups, MD was performed. In the MSM group, following MD, MSM was placed subgingivally around the implants. In the EMD group, after MD, EMD was placed in the sulcus around the implants. Sampling of peri-implant crevicular fluid for microbial analysis with real-time polymerase chain reaction and recording of probing depth (PD) and bleeding on probing (BOP) were performed prior to as well as two weeks and three months after treatment. Median values and interquartile range were estimated for each variable during the various assessment intervals of the study. Results: In all groups, at two weeks and three months, the counts of Porphyromonas gingivalis decreased significantly compared to baseline. Levels of P. gingivalis were significantly reduced in MSM (P<0.001) and EMD (P=0.026) groups compared to the control group. Also, clinical parameters improved significantly at two weeks and three months. Reduction of PD was significant in MSM (P<0.001) and EMD (P<0.001) groups. The decrease in BOP in the MSM, EMD, and control groups was 60%, 50%, and 20%, respectively. Conclusion: The use of MSM and EMD can be an adjunctive treatment for management of PIMI and improves clinical parameters and reduces P. gingivalis burden three months after treatment.