• 제목/요약/키워드: electrochemical polymerization

검색결과 113건 처리시간 0.028초

PEDOT Polymer Film Based Counter Electrodes for Pt-free Dye-Sensitized Solar Cells

  • Kwon, Jeong;Park, Jong Hyeok
    • Journal of Electrochemical Science and Technology
    • /
    • 제4권3호
    • /
    • pp.89-92
    • /
    • 2013
  • Poly (3,4-ethylenedioxythiophene) (PEDOT) polymers with different electric conductivities were synthesized directly on a FTO substrate via a chemical polymerization method and applied as a platinum (Pt)-free counter electrode for dye-sensitized solar cells (DSSCs). The catalytic properties of the PEDOT as a function of electrical conductivity were studied using cyclic voltammograms, J-V measurements and impedance spectroscopy. The PEDOT counter electrode with around 340 S/cm conductivity exhibited the best performance as a counter electrode for tri-iodide reduction. The ability to modulate catalytic activity of PEDOT with changes in conductivity shows one of promising routes for developing new counter electrode of Pt-free DSSCs.

Polypyrrole Film Studied by Three-Parameter Ellipsometry

  • 김동래;이덕환;백운기
    • Bulletin of the Korean Chemical Society
    • /
    • 제17권8호
    • /
    • pp.707-712
    • /
    • 1996
  • Growth and changes of electronically conducting polypyrrole (PPy) in the form of thin films polymerized on metal electrodes were investigated by electrochemical and in situ three-parameter ellipsometry methods at the wavelength of 632.8 nm. Although the optical equations produced multiple sets of solution, it was possible to determine a unique set of thickness and the optical constants of a film by auxiliary measurements and/or physical reasoning. The changes in the thickness and the optical properties of the polymers during polymerization and electrochemical oxidation/reduction was successfully followed by the three-parameter ellipsometric technique. The optical properties of the polymers continuously changed as the film grew. The imaginary part of the refractive index of polypyrrole seemed to be dominantly determined by the existence of an absorption band around the visible range.

Embargo Nature of CuO-PANI Composite Against Corrosion of Mild Steel in Low pH Medium

  • Selvaraj, P. Kamatchi;Sivakumar, S.;Selvaraj, S.
    • Journal of Electrochemical Science and Technology
    • /
    • 제10권2호
    • /
    • pp.139-147
    • /
    • 2019
  • Incorporation of CuO nanoparticles during the polymerization of aniline in the presence of ammonium peroxydisulphate as an oxidizing agent and sodium salt of dodecylbenzene sulphonic acid as dopant as well as surfactant yielded water soluble CuO-PANI composite. Comparison of recorded spectra like FTIR, XRD and SEM with reported one confirm the formation of the composite. Analysis by gravimetric method exposes that the synthesized composite is having resistivity against corrosion, with slight variation in efficiency on extending the time duration up to eight hours in strong acidic condition. OCP measurement, potentiodynamic polarization and EIS studies also confirms the suppression ability of composite against corrosion. Riskless working environment could be provided by the synthesized composite during industrial cleaning process.

전해 중합에 따른 폴리피롤 필름의 캐페시턴스 특성 (Capacitance Properties of the Polypyrrole Films Electropolymerized in Different Electrolyte Solutions)

  • 박호철;노근애;김종휘;고장면
    • 전기화학회지
    • /
    • 제4권3호
    • /
    • pp.94-97
    • /
    • 2001
  • 정전류법으로 다양한 전해용액에서 제조한 Polypyrrole(PPy) 필름의 캐페시턴스 특성을 cyclic voltammetry 기법을 이용하여 조사하였다. 0.5M $LiClO_4/PC(propylene carbonate)/AN(acetonitrile)$ 혼합용액에 $10\%$의 수분을 첨가한 전해질에서 제조한 PPy필름이 가장 큰 401 F/g의 커패시턴스를 나타내었다. 또한 0.5M $LiClO_4\;AN에\;10\%$의 수분을 혼합한 전해질에서 제조한 PPy필름은 2000회의 충방전에서 초기용량의 $70\%$를 나타내었다. 제조된 PPy필름의 케폐시턴스 특성은 사용된 용매에 크게 의존함을 알 수 있었다.

Application of Polyaniline to an Enzyme-Amplified Electrochemical Immunosensor as an Electroactive Report Molecule

  • Kwon, Seong-Jung;Seo, Myung-Eun;Yang, Hae-Sik;Kim, Sang-Youl;Kwak, Ju-Hyoun
    • Bulletin of the Korean Chemical Society
    • /
    • 제31권11호
    • /
    • pp.3103-3108
    • /
    • 2010
  • Conducting polymers (CPs) are widely used as matrixes for the entrapment of enzymes in analytical chemistry and biosensing devices. However, enzyme-catalyzed polymerization of CPs is rarely used for immunosensing due to the difficulties involved in the quantitative analysis of colloidal CPs in solution phase. In this study, an enzyme-amplified electrocatalytic immunosensor employing a CP as a redox marker has been developed. A polyanionic polymer matrix, $\alpha$-amino-$\omega$-thiol terminated poly(acrylic acid), was employed for precipitation of CP. The acrylic acid group acts as a polyanionic template. The thiol terminus of the polymer was used to produce self-assembled monolayers (SAMs) on Au electrodes and the amine terminus was employed for immobilization of biomolecules. In an enzymeamplified sandwich type immunosensor, the polyaniline (PANI) produced enzymatically is attracted by the electrostatic force of the matrix polymer. The precipitated PANI was characterized by electrochemical methods.

Determination of Hydrogen Peroxide on Modified Glassy Carbon Electrode by Polytetrakis(2-aminophenyl)porphyrin Nanowire

  • Jeong, Hae-Sang;Kim, Song-Mi;Seol, Hee-Jin;You, Jung-Min;Jeong, Eun-Seon;Kim, Seul-Ki;Seol, Kyung-Sik;Jeon, Seung-Won
    • Bulletin of the Korean Chemical Society
    • /
    • 제30권12호
    • /
    • pp.2979-2983
    • /
    • 2009
  • Nanowires of polytetrakis(o-aminophenyl)porphyrin (PTAPPNW) were fabricated by electrochemical polymerization with the cyclic voltammetric method in anodic aluminum oxide (AAO) membranes. The glassy carbon electrode (GCE) modified by PTAPPNW, single-walled carbon nanotubes (SWNT) and Nafion as a binder was investigated with voltammetric methods in a phosphate buffer saline (PBS) solution at pH 7.4. The PTAPPNW + SWNT + Nafion/GCE exhibited strongly enhanced voltammetric and amperometric sensitivity towards hydrogen peroxide ($H_2O_2$), which shortened the response time and enhanced the sensitivity for $H_2O_2$ determination at an applied potential of 0.0 V by amperometric method. The PTAPPNW + SWNT + Nafion/GCE can be used to monitor $H_2O_2$ at very low concentrations in biological pH as an efficient electrochemical $H_2O_2$ sensor.

Highly Sensitive and Selective Glucose Sensor Realized by Conducting Polymer Modified Nanoporous PtZn Alloy Electrode

  • Jo, Hyejin;Piao, Hushan;Son, Yongkeun
    • Journal of Electrochemical Science and Technology
    • /
    • 제4권1호
    • /
    • pp.41-45
    • /
    • 2013
  • Platinum is a well known element which shows a significant electrocatalytic activity in many important applications. In glucose sensor, because of the poisoning effect of reaction intermediates and the low surface area, the electrocatalytic activity towards the glucose oxidation is low which cause the low sensitivity. So, we fabricate a nanoporous PtZn alloy electrode by deposition-dissolution method. It provides a high active surface and a large enzyme encapsulating space per unit area when it used for an enzymatic glucose sensor. Glucose oxidase was immobilized on the electrode surface by capping with PEDOT composite and PPDA. The composite and PPDA also can exclude the interference ion such as ascorbic acid and uric acid to improve the selectivity. The surface area was determined by cyclic voltametry method and the surface structure and the element were analyzed by Scanning Electron Microscope (SEM) and Energy Dispersive X-ray spectroscopy (EDX), respectively. The sensitivity is $13.5{\mu}A/mM\;cm^2$. It is a remarkable value with such simply prepared senor has high selectivity.

BF3LiMA를 단량체로 하는 고체 고분자전해질 합성과 전기화학적 특성 (Synthesis and Electrochemical Properties of Solid Polymer Electrolytes Using BF3LiMA as Monomer)

  • 김경찬;류상욱
    • 전기화학회지
    • /
    • 제14권4호
    • /
    • pp.208-213
    • /
    • 2011
  • 합성된 $BF_3LiMA$ 리튬염을 단량체로 사용하는 고체 고분자전해질을 제조하고 $BF_3LiMA$의 농도가 이온전도도에 미치는 영향 및 전기화학적 안정성을 교류임피던스 측정법과 선형전위주사법을 통하여 평가하였다. 그 결과 $BF_3LiMA$가 12.9 wt%인 고체 고분자전해질에서 $7.71{\times}10^{-6}S\;cm^{-1}$의 가장 높은 $25^{\circ}C$ 이온전도도가 관찰되었으며 이 값을 전후로 이온전도도는 다소 감소하는 경향이 나타났다. 이러한 결과는 저농도의 $BF_3LiMA$에서 발생할 수 있는 리튬염의 부족과 고농도의 $BF_3LiMA$에서는 발생할 수 있는 고분자기질의 유동성 감소가 원인으로 해석된다. 또한 $BF_3LiMA$ 기반의 고체 고분자전해질은 음이온이 고정되어 있는 자기-도핑형 계열로서 $60^{\circ}C$에서 6.0 V까지 우수한 전기화학적 안정성을 보여주었다.

젤 고분자 전해질의 전기화학적 특성에 대한 단량체 및 개시제의 영향 (Effect of Monomers and Initiators on Electrochemical Properties of Gel Polymer Electrolytes)

  • 박현규;류상욱
    • 폴리머
    • /
    • 제34권4호
    • /
    • pp.357-362
    • /
    • 2010
  • Poly(ethyleneglycol diacrylate)(PEGDA) 혹은 2-ethylhexyl acrylate(2EHA)를 기반으로 하는 고체함 량 8~54 wt%의 젤 고분자 전해질(GPE)을 합성하여 상온 이온전도도 및 전기화학적 특성을 평가하였다. 그 결과 투명하고 균일한 젤을 형성하는 21 wt%의 PEGDA계에서 $1\times10^{-3}$ S/cm 이상의 높은 상온 이온전도도를 얻을 수 있었다. 하지만 GPE는 액체전해액에 비해 낮은 전압안정성을 보여주었는데, 고분자 합성과정에서 개시제인 AIBN 에 원인이 있음을 제안하였다. 그 결과 BPO를 개시제로 사용하여 전압안정성이 향상된 GPE를 확보할 수 있었다. 또한 음극에서 리튬이온의 삽입과 탈리가 용이하면서 환원분해전위에 안정한 계면피막이 형성되었음을 확인하였다.