DOI QR코드

DOI QR Code

PEDOT Polymer Film Based Counter Electrodes for Pt-free Dye-Sensitized Solar Cells

  • Kwon, Jeong (School of Chemical Engineering, Sungkyunkwan University) ;
  • Park, Jong Hyeok (School of Chemical Engineering, Sungkyunkwan University)
  • Received : 2013.06.11
  • Accepted : 2013.08.14
  • Published : 2013.09.30

Abstract

Poly (3,4-ethylenedioxythiophene) (PEDOT) polymers with different electric conductivities were synthesized directly on a FTO substrate via a chemical polymerization method and applied as a platinum (Pt)-free counter electrode for dye-sensitized solar cells (DSSCs). The catalytic properties of the PEDOT as a function of electrical conductivity were studied using cyclic voltammograms, J-V measurements and impedance spectroscopy. The PEDOT counter electrode with around 340 S/cm conductivity exhibited the best performance as a counter electrode for tri-iodide reduction. The ability to modulate catalytic activity of PEDOT with changes in conductivity shows one of promising routes for developing new counter electrode of Pt-free DSSCs.

Keywords

References

  1. B. O'Regan and M. Gratzel, Nature, 353, 737 (1991). https://doi.org/10.1038/353737a0
  2. P. Wang, S.M. Zakeeruddin, P. Comte, I. Exnar, and M. Gratzel, J. Am. Chem. Soc., 125, 1166 (2003). https://doi.org/10.1021/ja029294+
  3. A. Yella, H.W. Lee, H.N. Tsao, C. Yi, A.K. Chandiran, M.K. Nazeeruddin, E.W.G. Diau, C.Y. Yeh, S.M. Zakeeruddin and M. Gratzel, Science, 334, 629 (2011). https://doi.org/10.1126/science.1209688
  4. T.N. Murakami and M. Gratzel, Inorg. Chim. Acta, 361, 572 (2008). https://doi.org/10.1016/j.ica.2007.09.025
  5. N. Papageorgiou, Coord. Chem. Rev., 248, 1421 (2004). https://doi.org/10.1016/j.ccr.2004.03.028
  6. R. Bashyam and P. Zelenary, Nature, 443, 63 (2006). https://doi.org/10.1038/nature05118
  7. T.L. Hsieh, H.W. Chen, C.W. Kung, C.C. Wang, R. Vittal and K.C. Ho, J. Mater. Chem., 22, 5550 (2012). https://doi.org/10.1039/c2jm14623a
  8. M. Biancardo, K. West and F.C. Krebs, J. Photochem. Photobiology A: Chem., 187, 395 (2007). https://doi.org/10.1016/j.jphotochem.2006.11.008
  9. T. Muto, M. Ikegami, K. Kobayashi and T. Miyasaka, Chem. Lett., 36, 804 (2007). https://doi.org/10.1246/cl.2007.804
  10. Q. Li, J. Wu, Q. Tang, Z. Lan, P. Li, J. Lin and L. Fan, Electrochem. Commun., 10, 1299 (2008). https://doi.org/10.1016/j.elecom.2008.06.029
  11. Y.H. Ha, N. Nikolov, S.K. Pollack, J. Mastrangelo, B.D. Martin and R. Shashidhar, Adv. Funct. Mater., 14, 615 (2004). https://doi.org/10.1002/adfm.200305059
  12. K.S. Lee, H.K. Lee, D.H. Wang, N.G. Park, J.Y. Lee, O.O. Park and J.H. Park, Chem. Commun., 46, 4505 (2010). https://doi.org/10.1039/c0cc00432d
  13. V. Ganapathy, B. Karunagaran and S.W. Rhee, ACS Appl. Mater. Interfaces, 3, 857 (2011). https://doi.org/10.1021/am101204f
  14. K.S. Lee, Y. Jun and J.H. Park, Nano Lett., 12, 2233 (2012). https://doi.org/10.1021/nl204287w

Cited by

  1. Enhanced Efficiency of Nanoporous-layer-covered TiO2NanotubeArrays for Front Illuminated Dye-sensitized Solar Cells vol.7, pp.1, 2016, https://doi.org/10.5229/JECST.2016.7.1.52
  2. Recent Progress in Non-Platinum Counter Electrode Materials for Dye-Sensitized Solar Cells vol.2, pp.7, 2015, https://doi.org/10.1002/celc.201402406