DOI QR코드

DOI QR Code

Nucleation Process of Indium on a Copper Electrode

  • Chung, Yonghwa (Department of Advanced Materials Chemistry, Korea University) ;
  • Lee, Chi-Woo (Department of Advanced Materials Chemistry, Korea University)
  • Received : 2013.09.06
  • Accepted : 2013.09.26
  • Published : 2013.09.30

Abstract

The electrodeposition of indium onto a copper electrode from an aqueous sulfate solution containing $In^{3+}$ was studied by means of cyclic voltammetry and chronoamperometry. Reduction and oxidation of indium on copper were investigated by using cyclic voltammograms at different negative limiting potentials and at different scan rates in cumulative cycles. Cyclic voltammograms indicated that reduction and oxidation processes of indium could involve various reactions. Chronoamperometry was carried out to analyze the nucleation mechanism of indium in the early stage of indium electrodeposition. The non-dimensional plot of the current transients at different potentials showed that the shape of the plot depended on the applied potential. The nucleation of indium at potential step of -0.6~-0.8 V was close to progressive nucleation limited by diffusion. However the non-dimensional plot of current transients for the indium nucleation showed different behaviors from theoretical curves at the potential step lower than -0.8 V.

Keywords

References

  1. O. Bamiduro, G. Chennamadhava, R. Mundle, R. Konda, B. Robinson, M. Bahoura, and A. K. Pradhan, Solar Energy, 85, 545 (2011). https://doi.org/10.1016/j.solener.2010.12.025
  2. V.S. Saji, S.-M. Lee, and C.-W. Lee, J. Korean Electrochem. Soc., 14, 6170 (2011).
  3. I. Repins, M.A. Contreras, B. Egaas, C. DeHart, J. Scharf, C.L. Perkins, B. To, and R. Noufi, Prog. Photovolt: Res. Appl. 16, 235239 (2008).
  4. V.S. Saji, I.-H. Choi, and C.-W. Lee, Solar Energy, 85, 26662678 (2011).
  5. Y. Chung and C.-W. Lee, J. Electrochem. Sci. Tech., 3, 1 (2012). https://doi.org/10.5229/JECST.2012.3.1.1
  6. Y. Chung and C.-W. Lee, J. Electrochem. Sci. Tech., 4, 1 (2013). https://doi.org/10.5229/JECST.2013.4.1.1
  7. V.S. Saji and C.-W. Lee, RSC Adv., 3, 10058 (2013). https://doi.org/10.1039/c3ra40678d
  8. G. Gunawardena, G. Hills, I. Montenegro, and B. Scharifker, J. Electroanal. Chem., 138, 225 (1982). https://doi.org/10.1016/0022-0728(82)85080-8
  9. B. Scharifker and G. Hills, Electrochim. Acta, 28, 879 (1983). https://doi.org/10.1016/0013-4686(83)85163-9
  10. B.R. Scharifker and J. Mostany, J. Electroanal. Chem., 177, 13 (1984). https://doi.org/10.1016/0022-0728(84)80207-7
  11. D.J. Astley, J.A. Harrison, and H.R. Thirsk, Trans. Faraday Soc., 64, 192 (1968). https://doi.org/10.1039/tf9686400192
  12. G.J. Hills, D.J. Schiferin, and J. Thompson, Electrochim. Acta, 19, 657 (1974). https://doi.org/10.1016/0013-4686(74)80008-3
  13. G. Gunawardena, G. Hills, and I. Montenegro, Electrochim. Acta, 23, 693 (1978). https://doi.org/10.1016/0013-4686(78)80026-7
  14. V. Kamavaram and R. Reddy, Light Metals (TMS Annual Meeting and Exhibition), Ed. W. Schneider, 2002, 253 (2002).
  15. R.C. Valderrama, M. Miranda-Hernandez, P.J. Sebastian, and A.L. Ocampo, Electrochim. Acta, 53, 3714 (2008). https://doi.org/10.1016/j.electacta.2007.11.069
  16. Q. Huang, K. Reuter, S. Amhed, L. Deligianni, L.T. romankiw, S. Jaime, P.-P. Grand, and V. Charrier, J. Electrochem. Soc., 158, D57 (2011). https://doi.org/10.1149/1.3518440
  17. P. Kondziela and J. Biermat, J. Electroanal. Chem., 61, 281 (1975). https://doi.org/10.1016/S0022-0728(75)80228-2
  18. D.G. Tuck, Pure & Appl. Chem., 55, 1477 (1983). https://doi.org/10.1351/pac198355091477
  19. M. Zeliae, M. Mlakar, and M. Branica, Anal. Chim. Acta, 289, 299 (1994). https://doi.org/10.1016/0003-2670(94)90005-U
  20. R. Tokoro, M. Bertotti, and L. Angnes, Can. J. Chem. 73, 232 (1995). https://doi.org/10.1139/v95-032
  21. D.R. Lide (ed), CRC Handbook of Chemistry and Physics, 88th ed. CRC Press, Boca Raton, FL, p. 8-20 (2008).
  22. L.G. Hepler, Z.Z. Hugus Jr., and W.M. Latimer, J. Am. Chem. Soc., 75, 5652 (1953). https://doi.org/10.1021/ja01118a053
  23. S. Omanovic, M. Metikos-Hukovic, Thin Solid Films, 458, 52 (2004). https://doi.org/10.1016/j.tsf.2003.11.271
  24. G. Gunawardena, G. Hills, and I. Montenegro, J. Electroanal. Chem., 138, 241 (1982). https://doi.org/10.1016/0022-0728(82)85081-X
  25. J. Mostany, J. Mozota, and B.R. Scharifker, J. Electroanal. Chem., 177, 25 (1984). https://doi.org/10.1016/0022-0728(84)80208-9
  26. M. Miranda-Hernandez, M. Palomar-Pardave, N. Batina, and I. Gonzalez, J. Electroanal. Chem., 443, 81 (1998). https://doi.org/10.1016/S0022-0728(97)00487-7
  27. G. Gunawardena, G. Hills, and I. Montenegro, J. Electroanal. Chem., 184, 357 (1985). https://doi.org/10.1016/0368-1874(85)85539-8
  28. B. Scharifker, R. Rugeles, and J. Mozota, Electrochim. Acta, 29, 261 (1984). https://doi.org/10.1016/0013-4686(84)87057-7
  29. S. Sobri and S. Roy, J. Eng. Sci. Tech., 3, 62 (2008).
  30. A. Radisic, A.C. West, and P.C. Searson, J. Electrochem. Soc., 149, C94 (2002). https://doi.org/10.1149/1.1430719
  31. R.E. Visco, J. Phys. Chem., 69, 202 (1965). https://doi.org/10.1021/j100885a030
  32. S.M. Lee, S. Ikeda, Y. Otsuka, W. Septina, T. Harada, and M. Matsumura, Electrochim. Acta, 79, 189 (2012). https://doi.org/10.1016/j.electacta.2012.06.103

Cited by

  1. The Kinetics of Indium Electroreduction from Chloride Solutions vol.54, pp.12, 2018, https://doi.org/10.1134/S1023193518120042