DOI QR코드

DOI QR Code

Highly Sensitive and Selective Glucose Sensor Realized by Conducting Polymer Modified Nanoporous PtZn Alloy Electrode

  • Jo, Hyejin (Department of chemistry and BK21 School of Chemical Materials Science, Sungkyunkwan University) ;
  • Piao, Hushan (Department of chemistry and BK21 School of Chemical Materials Science, Sungkyunkwan University) ;
  • Son, Yongkeun (Department of chemistry and BK21 School of Chemical Materials Science, Sungkyunkwan University)
  • Received : 2013.03.25
  • Accepted : 2013.03.30
  • Published : 2013.03.30

Abstract

Platinum is a well known element which shows a significant electrocatalytic activity in many important applications. In glucose sensor, because of the poisoning effect of reaction intermediates and the low surface area, the electrocatalytic activity towards the glucose oxidation is low which cause the low sensitivity. So, we fabricate a nanoporous PtZn alloy electrode by deposition-dissolution method. It provides a high active surface and a large enzyme encapsulating space per unit area when it used for an enzymatic glucose sensor. Glucose oxidase was immobilized on the electrode surface by capping with PEDOT composite and PPDA. The composite and PPDA also can exclude the interference ion such as ascorbic acid and uric acid to improve the selectivity. The surface area was determined by cyclic voltametry method and the surface structure and the element were analyzed by Scanning Electron Microscope (SEM) and Energy Dispersive X-ray spectroscopy (EDX), respectively. The sensitivity is $13.5{\mu}A/mM\;cm^2$. It is a remarkable value with such simply prepared senor has high selectivity.

Keywords

References

  1. S. J. Updike, M. C. Shults, B. J. Gilligan and R. K. Rhodes, Diabetes Care, 23(2), 208 (2000). https://doi.org/10.2337/diacare.23.2.208
  2. B. Aussedat, V. Thome-Duret, G. Reach, F. Lemmonier, J. C. Klein, Y. Hu and G. S. Wilson, Biosensor. Bioelectron., 12 (11), 1061(1997). https://doi.org/10.1016/S0956-5663(97)00083-3
  3. N. A. Rakow and K. S. Suslick, Nature, 406, 710 (2000). https://doi.org/10.1038/35021028
  4. R. W. Keay and C. J. McNeil, Biosens. Bioelectron., 13 (9), 963 (1998). https://doi.org/10.1016/S0956-5663(98)00008-6
  5. K. Rekha, M. S. Thakur, N. G. Karanth and M. D. Gouda, Biosens. Bioelectron., 15, 499 (2000). https://doi.org/10.1016/S0956-5663(00)00077-4
  6. Y. L. Wang, Y. C. Zhu, Y. Y. Liu, Y. Yang, Q. C. Ruan and F. F. Xu, J. Nanosci. Nanotechnol., 10, 8286 (2010). https://doi.org/10.1166/jnn.2010.2676
  7. L. Q. Rong, C. Yang, Q. Y. Qian and X. H. Xia, Talanta, 72, 819 (2007). https://doi.org/10.1016/j.talanta.2006.12.037
  8. P. C. Nien, J. Y. Wang, P. Y. Chen, L. C. Chen and K. C. Ho, Bioresource technology, 101, 5480 (2010). https://doi.org/10.1016/j.biortech.2010.02.012
  9. Z. N. Liu, L. H. Huang, L. L. Zhang, H. Y. Ma and Y. Ding, Electrochimica Acta, 54, 7286 (2009). https://doi.org/10.1016/j.electacta.2009.07.049
  10. N. Hamdi, J. J. Wang, E. Walker, , N. T. Maidment and H. G. Monbouquette, J. Electroanal. Chem., 591(1), 33 (2006). https://doi.org/10.1016/j.jelechem.2006.03.022
  11. S. H. Joo, S. J. Choi, K. J. Kwa and Z. Liu, Nature, 412, 169 (2001). https://doi.org/10.1038/35084046
  12. T. You, O. Niwa, M. Tomita and S. Hirono, Anal. Chem., 75, 2080 (2003). https://doi.org/10.1021/ac026337w
  13. G. C. Bond and D. T. Thompson, Catalysis reviews, 41, 319 (1999). https://doi.org/10.1081/CR-100101171
  14. H. Liu, P. He, Z. Li and J. Li, Nanotechnology, 17 (9), 2167 (2006). https://doi.org/10.1088/0957-4484/17/9/015
  15. G. Roventi, T. Bellezze and R. Fratesi, Electrochimica Acta, 51, 2691 (2006). https://doi.org/10.1016/j.electacta.2005.08.002
  16. J. F. Huang and I. W. Sun, Chem. Mater., 16 (10) 1829 (2004). https://doi.org/10.1021/cm030462m
  17. Y. Yao, S. Xu, Y. Xia, Y. Yang, J. Liu, Z. Li and W. Huang, Int. J. Electrochem. Sci., 7, 3265 (2012).
  18. L. Liu, Z. Huang, D. Wang and R. Scholz, Nanotechnology, 22, 105604 (2011). https://doi.org/10.1088/0957-4484/22/10/105604
  19. K. N. Lee, Y. K. Lee and Y. K. Son, Electroanalysis, 23, 2125 (2011). https://doi.org/10.1002/elan.201100183
  20. J. Park, H. K. Kim and Y. K. Son, Sensors and Actuators B, 133, 244 (2004).
  21. S. Trasatti and O. A. Petrii, Pure & Appl. Chem., 63 (5) 711 (1991). https://doi.org/10.1351/pac199163050711
  22. E. Aschauer, R. Fasching, M. Varahram and G. Jobst, Journal of Electroanalytical Chemistry, 426, 157 (1997). https://doi.org/10.1016/S0022-0728(96)04967-4
  23. T. J. Schmidt, H. A. Gasteiger, G. D. Stab, P. M. Urban, D. M. Kolb and R. J. Behm, J. Electrochem. Soc., 145 (7), 2354 (1998). https://doi.org/10.1149/1.1838642
  24. F. G. Will, J. Electrochemical Society, 112(4), 451 (1965). https://doi.org/10.1149/1.2423567
  25. X. Chen, H. Pan, H. Liu and M. Du, Electrochimica Acta, 56, 636 (2010). https://doi.org/10.1016/j.electacta.2010.10.001
  26. M. Yuqing, C. Jianrong and W. Xiaohua, Trends Biotechnol., 22, 227 (2004). https://doi.org/10.1016/j.tibtech.2004.03.004
  27. S. Zhang, N. Wang, H. Yu, Y. Niu and C. Sun, Bioelectrochemistry, 67, 15, (2005). https://doi.org/10.1016/j.bioelechem.2004.12.002
  28. W. Yang, J. Wang, S. Zhao, Y. Sun and C. Sun, Electrochem. Commun., 8, 665, (2006). https://doi.org/10.1016/j.elecom.2005.11.014
  29. M. Lee, Y. Son, J. Park and Y. Lee, Mole. Cryst. Liq. Cryst. 49, 155, (2008).
  30. M. H. Xue, Q. Xu, M. Zhou and J. J. Zhu, Electrochem. Commun., 8, 1468, (2006). https://doi.org/10.1016/j.elecom.2006.07.019

Cited by

  1. Fabrication of sensitive enzymatic biosensor based on multi-layered reduced graphene oxide added PtAu nanoparticles-modified hybrid electrode vol.12, pp.3, 2017, https://doi.org/10.1371/journal.pone.0173553
  2. A Poly(trypan blue)-Modified Anodized Glassy Carbon Electrode for the Sensitive Detection of Dopamine in the Presence of Uric Acid and Ascorbic Acid vol.164, pp.2, 2017, https://doi.org/10.1149/2.0371702jes