• Title/Summary/Keyword: Amperometric detection

Search Result 74, Processing Time 0.026 seconds

Flow Injective Determination of Thiourea by Amperometry

  • Lee Joon-Woo;Mho Sun-Il;Pyun Chong Hong;Yeo In-Hyeong
    • Bulletin of the Korean Chemical Society
    • /
    • v.15 no.12
    • /
    • pp.1038-1042
    • /
    • 1994
  • The amperometric responses of thiourea were studied in 0.1 M NaOH by flow injection analysis. D. C. amperometric and pulsed amperometric detection methods were applied for the determination of thiourea at novel metal electrodes such as Pt and Au. Triple-step potential waveforms were adopted in the pulsed amperometric detection. With an optimized pulsed waveform, the current for the oxidation of thiourea was examined with the variation of flow rate of carrier solution and with the change in the amount of sample injected. Gold working electrode turned out to be better in sensitivity and signal to noise ratio than Pt electrode in the pulsed amperometric detection of thiourea. Detection limit is estimated to be 5.33 ${\times}$ 10$^{-5}$ M with this detection method.

Amperometric Detection of DNA by Electroreducation of O2 in an Enzyme-Amplified Two-Component Assay

  • Yoon Chang-Jung;Kim Hyug-Han
    • Journal of the Korean Electrochemical Society
    • /
    • v.7 no.1
    • /
    • pp.44-48
    • /
    • 2004
  • The two-component type enzyme amplified amperometric DNA assay is described to use an ambient $O_2$ of the substrate of the DNA labeling enzyme. Although the assay detects DNA only at > 0.5M concentration, a concentration $\~10^6$ fold higher than the sandwich-type enzyme amplified amperometric DNA assay, it can be run with an always available substrate. The assay utilizes screen-printed carbon electrodes (SPEs) which were pre-coated by a co-electrodeposited film of an electron conducting redox hydrogel and a 37-base long single-stranded DNA sequence. The DNA in the electron conducting film hybridizes and captures, when present, the 37-base long detection-DNA, which is labeled with bilirubin oxidase (BOD), an enzyme catalyzing the four-electron reduction of $O_2$ to water. Because the redox hydrogel electrically connects the BOD reaction centers to the electrode, completion of the sandwich converts the film from non-electrocatalytic to electrocatalytic for the reduction of $O_2$ to water when the electrode is poised at 200 mV vs. Ag/hgCl. The advantage or the assay over the earlier reported sandwich type enzyme amplified amperometric DNA assay, in which the amplifying enzyme was horseradish peroxidase, is that it utilizes ambient $O_2$ instead of the less stable and naturally unavailable $H_2O_2$.

Amperometric Detection of Hydroquinone and Homogentisic Acid with Laccase Immobilized Platinum Electrode

  • Quan, De;Shin, Woon-Sup
    • Bulletin of the Korean Chemical Society
    • /
    • v.25 no.6
    • /
    • pp.833-837
    • /
    • 2004
  • DeniLite$^{TM}$ laccase immobilized platinum electrode was used for amperometric detection of hydroquinone (HQ) and homogentisic acid (HGA) by means of substrate recycling. In case of HQ, the obtained sensitivity is 280 nA/ ${\mu}$M with linear range of 0.2-35 ${\mu}$M ($r^2$ = 0.998) and detection limit (S/N = 3) of 50 nM. This high sensitivity can be attributed to chemical amplification due to the cycling of the substrate caused by enzymatic oxidation and following electrochemical regeneration. In case of HGA, the obtained sensitivity is 53 nA/ ${\mu}$M with linear range of 1-50 $[\mu}M\;(r^2$ = 0.999) and detection limit of 0.3 ${\mu}$M. The response times ($t_{90%}$) are about 2 seconds for the two substrates and the long-term stability is 60 days for HQ and around 40-50 days for HGA with retaining 80% of initial activities. The very fast response and the durable long-term stability are the principal advantages of this sensor. pH studies show that optimal pH of the sensor for HQ is 6.0 and that for HGA is 4.5-5.0. This shift of optimal pH towards acidic range for HGA can be attributed to the balance between enzyme activity and accessibility of the substrate to the active site of the enzyme.

Pulsed Amperometric Detection of Metal Ions Complexing with EDTA in a Flow Injection System

  • 이준우;여인형;편종홍
    • Bulletin of the Korean Chemical Society
    • /
    • v.18 no.3
    • /
    • pp.316-318
    • /
    • 1997
  • A general and universal detection method, which can be used in high performance liquid chromatography (HPLC) and flow injection analysis (FIA) system for the determination of any metal ions complexing with ethylenediaminetetraacetic acid (EDTA), is demonstrated. Pulsed amperometric detection scheme is applied in a flow-through thin layer electrochemical cell at an Au working electrode. Fluctuation of peak current level at the same flow rate of carrier solution is minimized at this solid working electrode, whereas not at a dropping mercury electrode. Removal of dissolved oxygen can be omitted with this detection method, which is a required step for cathodic detection methods. Also, a group of metal ions can be determined selectively and indirectly with this detection scheme.

Determination Method of Puerarin and Daidzin from Puerariae Radix by Reversed-Phase HPLC with Pulsed Amperometric Detection (RP-HPLC-PAD를 이용한 갈근(葛根)과 갈근(葛根) 함유 처방의 Puerarin과 Daidzin 분석)

  • Chiao, Chen-Ying;Kwon, Ha-Jeong;Jeong, Ji-Seon;Lee, Je-Hyun;Hong, Seon-Pyo
    • The Korea Journal of Herbology
    • /
    • v.23 no.4
    • /
    • pp.171-177
    • /
    • 2008
  • Objectives: This study presents a reversed-phase high-performance liquid chromatography- pulsed amperometric detection(RP-HPLC-PAD) method for the determination of puerarin and daidzin in Puerariae Radix extract and Chinese medicinal preparations. Methods: Chromatographic separation was performed using a 10% acetonitrile with a reversed-phase column(Unison UK-C18, $100mm{\times}2.0mm$ I.D.; $3{\mu}m$). The analyses were detected by pulsed amperometric detector(PAD) in alkaline conditions by combining with post-column NaOH solution. Geniposide was used as an internal standard. Results: The limit of detection(S/N=3) and the limit of quantification(S/N=10) were 0.025 ng, 0.075 ng for puerarin, and 0.05 ng, 0.15 ng for daidzin, respectively. The intra- and inter-day precisions(RSDs) were less than 6.5% and average recoveries of puerarin were 99.7-101.3% and those of daidzin were 101.0-102.8%. Conclusions: According to above results, we developed a determination method for puerarin and daidzin in Puerariae Radix with high sensitivity and selectivitely.

  • PDF

Optimization of Wave Forms for Pulsed Amperometric Detection of Cyanide and Sulfide with Silver-Working Electrode

  • Park, Seong U;Hong, Seong Uk;Yu, Jae Hun
    • Bulletin of the Korean Chemical Society
    • /
    • v.17 no.2
    • /
    • pp.143-146
    • /
    • 1996
  • A continuous potential pulse is applied to a silver-working electrode on a pulsed amperometric detector (PAD) for detection of free cyanide and sulfide. The moving phase is 0.1 M sodium hydroxide, 0.5 M sodium acetate and 5% (v/v) ethylenediamine mixture, and the flow rate is 0.7 mL/min. Optimized pulse conditions include a -200 mV (vs. Ag/AgCl reference electrode) detection potential(Ed) for 60 msec and 50 mV cleaning potential (Ec) for 120 msec. The silver working electrode surface is not poisoned by cyanide or sulfide, and the PAD maintains long-term stability without loss of sensitivity and reproducibility at these pulse conditions. The detection limit of cyanide and sulfide separated by ion chromatography using an anion exchange column is 0.1 ppm and 0.05 ppm, respectively.

Tri-enzyme modified electrochemical biosensor for paracetamol detection (파라세타몰 검출을 위한 전기화학적 다중효소 바이오센서)

  • Park, Deog-Su;Shim, Yoon-Bo;Chang, Seung-Cheol
    • Journal of Sensor Science and Technology
    • /
    • v.17 no.1
    • /
    • pp.29-34
    • /
    • 2008
  • A new disposable amperometric tri-enzyme biosensor for the detection of paracetamol has been developed. The paracetamol sensors developed uses horseradish peroxidase modified screen-printed carbon electrodes (HRP-SPCEs) coupled with immobilized enzymes, tyrosinase and aryl acylamidase, prepared using a poly (vinyl alcohol) bearing styrylpyridinium groups (PVA-SbQ) matrix. Optimization of the experimental parameters has been performed and the paracetamol biosensor showed detection limit for paracetamol is as low as $100{\mu}M$ and the sensitivity of the sensor is $1.46nA{\mu}M^{-1}cm^{-2}$.

Amperometric Morphine Detection Using Pt-Co Alloy Nanowire Array-modified Electrode

  • Tao, Manlan;Xu, Feng;Li, Yueting;Xu, Quanqing;Chang, Yanbing;Wu, Zaisheng;Yang, Yun-Hui
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.7
    • /
    • pp.1968-1972
    • /
    • 2010
  • Pt-Co alloy nanowire array was directly synthesized by electrochemical deposition with polycarbonate template at -1.0V and subsequent chemical etching of the template. The use of Pt-Co alloy nanowire array-modified electrode (Pt-Co NAE) for the determination of morphine (MO) is described. The morphology of the Pt-Co alloy nanowire array has been investigated by scanning electron microscopy (SEM) and energy disperse X-ray spectroscopy (EDS) analysis), respectively. The resulting Pt-Co NAE offered a linear amperometric response for morphine ranging from $2.35\times10^{-5}$ to $2.39\times10^{-3}$ M with a detection limit of $7.83\times10^{-6}$ M at optimum conditions. This sensor displayed high sensitivity and long-term stability.

An Amperometric Proton Selective Sensor with an Elliptic Microhole Liquid/Gel Interface for Vitamin-C Quantification

  • Faisal, Shaikh Nayeem;Hossain, Md. Mokarrom;Lee, Hye-Jin
    • Journal of Electrochemical Science and Technology
    • /
    • v.1 no.2
    • /
    • pp.121-126
    • /
    • 2010
  • An amperometric ascorbic acid selective sensor utilizing the transfer reaction of proton liberated from the dissociation of ascorbic acid in aqueous solution across an elliptic micro-hole water/organic gel interface is demonstrated. This redox inactive sensing platform offers an alternative way for the detection of ascorbic acid to avoid a fouling effect which is one of the major concerns in redox based sensing systems. The detection principle is simply measuring the current change with respect to the assisted transfer of protons by a proton selective ionophore (e.g., ETH 1778) across the micro-hole interface between the water and the polyvinylchloride-2-nitrophenyloctylether gel phase. The assisted transfer reaction of protons generated from ascorbic acid across the polarized micro-hole interface was first characterized using cyclic voltammetry. An improved sensitivity for the quantitative analysis of ascorbic acid was achieved using differential pulse stripping voltammetry with a linear response ranging from 1 to $100\;{\mu}M$ concentrations of ascorbic acid. As a demonstration, the developed sensor was applied for analyzing the content of vitamin-C in different types of commercial pharmaceutical tablets and syrups, and a satisfactory recovery from these samples were also obtained.

Fabrication of nanoporous gold thin films on glass substrates for amperometric detection of aniline

  • Lee, Keon-U;Kim, Sang Hoon;Shin, Hyung-Joon
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.354.1-354.1
    • /
    • 2016
  • Nanoporous gold (NPG) is a very promising material in various fields such as sensor, actuator, and catalysis because of its high surface to volume ratio and conducting nature. In this study, we fabricated a NPG based amperometric sensor on a glass substrate by means of co-sputtering of Au and Si. During the sputtering process, we found the optimum conditions for heat treatment to reduce the residual stress and to improve adhesion between NPG films and the glass substrate. Subsequently, Si was selectively etched from Au-Si alloy by KOH solution, which forms nanoporous structures. Scanning electron microscopy (SEM) and auger electron spectroscopy (AES) were used to estimate the structure of NPG films and their composition. By employing appropriate heat treatments, we could make very stable NPG films. We tested the performance of NPG sensor with aniline molecules, which shows high sensitivity for sensing low concentration of aniline.

  • PDF