• Title/Summary/Keyword: electrical resistance module

Search Result 118, Processing Time 0.029 seconds

Study on I-V simulation for PV module with matlab (Matlab을 이용한 PV모듈의 I-V시뮬레이션 관한 연구)

  • Hong, Jong-Kyoung;Jung, Tae-Hee;Kang, Gi-Hwan;Ahn, Hyung-Keun;Han, Deuk-Young
    • Journal of the Korean Solar Energy Society
    • /
    • v.29 no.4
    • /
    • pp.1-6
    • /
    • 2009
  • This paper estimates numerically cells the electrical characteristics of the PV module with environmental changes such as shunt resistance, series resistance, temperature, irradiance. Series resistance $R_s$ including diode characteristic resistance $r_d$ is derived from the p-n junction diode model. I-V characteristics of this model with series resistance $R_s$ are simulated on Matlab. Finally, theoretical I-V characteristics are compared with those of solar simulator. Those results agreed well within the manufacturer's maximum error range 3%

Series Resistance Change by Partial Shading in a-Si Thin Film Photovoltaic(PV) Module (부분 음영에 따른 a-Si Thin Film Photovoltaic(PV) Module의 직렬저항변화)

  • Shin, Jun-Oh;Jung, Tae-Hee;Kim, Tae-Bum;Woo, Sung-Chul;Yun, Na-Ri;Kang, Ki-Hwan;Han, Deuk-Young;Ahn, Hyung-Keun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.23 no.11
    • /
    • pp.901-905
    • /
    • 2010
  • PV module has many power loss factors, and series resistance is the most important elements of them. It is therefore easy to expect the partial shading decrease the lifetime of the semiconductor depletion layer in thin film PV module. Different shading losses could be related with the hot spot which is critical in expecting the reliability issue. In this paper we have modelled the series resistance of the PV module with both different direction of the cell line and shading area of the panel. From the results, thin film a-Si PV module has shown different properties by shading direction.

The Analysis of missmatch with resistance on Si-PV module (결정질 태양전지 모듈 내부 저항의 Missmatch 분석)

  • Ji, Yang-Geun;Kong, Ji-Hyun;Kong, Gi-Hwan;Yu, Gwon-Jong;Won, Chang-Sub;Ahn, Hyung-Geun;Han, Deuk-Young
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.98-103
    • /
    • 2009
  • In this paper, we test the electrical resistance of flat wire in the PV module. normally solar cell has two kind of flat wire(inter connection ribbon and bus bar ribbon). we found the phenomenon that has a unbalance with resistance when we make a wiling between of string. So, we measurement the resistance of flat wire each other. and analysis of missmatch with resistance between flat wires on PV module. next to survey of IR picture on missmatch flat wire samples for analyze of missmatch with current in the wire. and we perform IR test with solar cell that has a connection with flat wire for test the effect of missmatch resistance on solar cell. Finally we perform the Dark I-V test for survey of effect by the unbalance of resistance. By the result of Dark I-V test, the series resistance of existing connection sample is large more then innovated connection sample.

  • PDF

Effect of geometry of underground structure and electrode on electrical resistance measurement: A numerical study

  • Tae-Young Kim;Hee-Hwan Ryu;Meiyan Kang;Suyoung Choi;Song-Hun Chong
    • Geomechanics and Engineering
    • /
    • v.39 no.1
    • /
    • pp.105-113
    • /
    • 2024
  • Recently, electrical resistivity surveys have been used to obtain information related to underground structures including burial structure type and depth. However, various field conditions hinder understanding measured electrical resistance, and thus there is a need to understand how various geometries affect electrical resistance. This study explores the effect of geometric parameters of a structure and electrodes on electrical resistance in the framework of the finite element method. First, an electrical resistance module is developed using the generalized mesh modeling technique, and the accuracy of the module is verified by comparing the results with the analytical solution for a cylindrical electrode with conical tip. Then, 387 cases of numerical analysis including geometric parameters of a buried structure and electrodes are conducted to quantitatively estimate the detection depth under a steady-state current condition. The results show that electrical resistance is increased as (1) shallower burial depth of structure, (2) closer distance between ground electrode and structure, (3) longer horizontal electrode distance. In addition, the maximum detection depth corresponding to converged electrical resistance is deeper as (4) closer distance between ground electrode and structure, (5) shorter horizontal electrode distance. The distribution of the electric potential around the electrodes and underground structure is analyzed to provide a better understanding of the measured electrical resistance. As engineering purpose, the empirical equation is proposed to calculate maximum detection depth as first approximation.

The developed connection method on Si PV module (결정질 태양전지 모듈의 개선된 Connection Method)

  • Ji, Yang-Geun;Kong, Ji-Hyun;Kang, Gi-Hwan;Yu, Gwon-Jong;Ahn, Hyung-Geun;Han, Deuk-Yeong
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.115-120
    • /
    • 2009
  • In this paper, we measurement the resistance on the flat wire for PV module. There is some kind of flat wire that has different length and different contact area in the PV module. so we test the resistance on each case for analysis with common connection method. we measurement the electrical output characteristics and phenomenon of PV module that is applied new connetion method. by the result, The fill factor and electrical output characteristics on PV module are analyzed to getting better more then common connection method. Finally we recommend the developed connection method for diminishing of resistance on PV module. It enhance the electrical character more than common connection method.

  • PDF

Study on Design of 60 V TDMOSFET for Protection Circuit Module (Protection Circuit Module에 최적화된 60 V급 TDMOSFET 최적화 설계에 관한 연구)

  • Lee, Hyun-Woong;Jung, Eun-Sik;Oh, Reum;Sung, Man-Young
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.25 no.5
    • /
    • pp.340-344
    • /
    • 2012
  • Protected Circuit Module protects battery from over-charge and over-discharge, also prevents accidental explosion. Therefore, power MOSFET is essential to operate as a switch within the module. To reduce power loss of MOSFET, the on state voltage drop should be lowered and the switching time should be shorted. However there is trade-off between the breakdown voltage and the on state voltage drop. The TDMOS can reduce the on state voltage drop. In this paper, effect of design parameter variation on electrical properties of TDMOS, were analyzed by computer simulation. According to the analyzed results, the optimization was performed to get 65% higher breakdown voltage and 17.4% on resistance enhancement.

The Electrical Characteristics of PV Module by the Stress in accordance with Mechanical Weight Load (기계적 하중에 따른 스트레스로 인한 PV 모듈의 전기적 특성)

  • Kong, Ji-Hyun;Ji, Yang-Geun;Kang, Gi-Hwan;Yu, Gwon-Jong;Ahn, Hyung-Geun;Han, Deuk-Young
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.104-109
    • /
    • 2009
  • If the Photovoltaic(PV) Module should get physical load, the PV module will be warped according to elongation of the front glass and then micro-crack will be occurred in the heat sealed Solar Cell. This micro-crack drops output of the short circuit current and the open circuit voltage of the PV Module. This is because of increase of resistance component by micro-crack. Micro-crack at specific Solar Cell in the module reduces the durability of PV Module such as less output, Hot-Spot in the PV module caused by Solar Cell output mismatch, heat generating as resistance component caused by micro-crack. In this study, among some factors which effect to the output of crystalline PV Module, we will see how the micro-crack caused by mechanical stress effects to the electrical output of PV Module.

  • PDF

The Variation of Electrical Characteristics of PV Module due to Mechanical Stress (기계적 스트레스에 의한 태양전지모듈의 전기적 특성변화)

  • Kong, Ji-Hyun;Ji, Yang-Geun;Kang, Gi-Hwan;Kim, Kyung-Su;Yu, Gwon-Jong;Ahn, Hyung-Kuen;Han, Deuk-Young
    • New & Renewable Energy
    • /
    • v.6 no.1
    • /
    • pp.38-45
    • /
    • 2010
  • Abstract Under the physical stress on photovoltaic (PV) module, it will be warped according to elongation of the front glass and then micro-crack will be occurred in the thermally sealed solar cell. This micro-crack leads to drop of short circuit current of the PV module. This is because of increase of resistance component by micro-crack. Micro-crack at specific solar cell in the module lessens the durability of PV module with reduced output, hot-spot caused by solar cell output mismatch and increased resistance component. This study shows the relation between electrical characteristics and micro- cracks due to mechanical stress on PV module.

The electrical effects of PV cell's short-circuit current difference for PV module application (태양전지의 단락전류 편차가 태양전지모듈에 미치는 전기적인 영향 분석)

  • Kim, Seung-Tae;Park, Chi-Hong;Kang, Gi-Hwan;Ahn, Hyung-Keun;Han, Deuk-Young;Yu, Gwon-Jong
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.06a
    • /
    • pp.3-4
    • /
    • 2008
  • Photovoltaic module consists of serially connected solar cell which has low voltage characteristics. But, the other way, the whole current flow of PV module is restricted by lowest current of one solar cell. For the experiment, we make PV module composing the solar cells that have short circuit current difference of 0%, 1%, 3% and 5%. Using Light I-V and Dark I-V measurements, electrical characteristic parameters like Isc(short-circuit current), Voc(open-circuit voltage), Rs(series resistance), Rsh(shunt resistance) are analyzed. PV module of low current characteristics has electrical stress from other modules. And, such a module has a tendency of hot-spot suffering which leads degradation.

  • PDF

A Study on The Electrical Characteristics in Ribbon by Temperature Changes (온도 변화에 따른 Ribbon의 전기적 특성에 관한 연구)

  • Woo, Sung-Cheol;Jung, Tae-Hee;Kim, Tae-Bum;Kang, Ki-Hwan;Ahn, Hyeung-Ken;Han, Deuk-Young
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.06a
    • /
    • pp.67-67
    • /
    • 2010
  • PV module has many power loss factor in the site. Among them, one thing is series resistance. Especially interconnection ribbon resistance is one of the power loss. In this paper, we study interconnection ribbon resistance of the PV module material. In the field, high temperature can pile ribbon resistance on the PV modules. We can do better choice in the optimum use of ribbon through checking relation of ribbon dimension and resistivity. From this point of view, different solder type and dimension was treated.

  • PDF