DOI QR코드

DOI QR Code

Effect of geometry of underground structure and electrode on electrical resistance measurement: A numerical study

  • Tae-Young Kim (Department of Civil Engineering, Sunchon National University) ;
  • Hee-Hwan Ryu (Transmission & Substation Laboratory, Korea Electric Power Corporation (KEPCO) Research Institute) ;
  • Meiyan Kang (Department of Mathematics, Ajou University) ;
  • Suyoung Choi (Department of Mathematics, Ajou University) ;
  • Song-Hun Chong (Department of Civil Engineering, Sunchon National University)
  • Received : 2024.06.11
  • Accepted : 2024.08.25
  • Published : 2024.10.10

Abstract

Recently, electrical resistivity surveys have been used to obtain information related to underground structures including burial structure type and depth. However, various field conditions hinder understanding measured electrical resistance, and thus there is a need to understand how various geometries affect electrical resistance. This study explores the effect of geometric parameters of a structure and electrodes on electrical resistance in the framework of the finite element method. First, an electrical resistance module is developed using the generalized mesh modeling technique, and the accuracy of the module is verified by comparing the results with the analytical solution for a cylindrical electrode with conical tip. Then, 387 cases of numerical analysis including geometric parameters of a buried structure and electrodes are conducted to quantitatively estimate the detection depth under a steady-state current condition. The results show that electrical resistance is increased as (1) shallower burial depth of structure, (2) closer distance between ground electrode and structure, (3) longer horizontal electrode distance. In addition, the maximum detection depth corresponding to converged electrical resistance is deeper as (4) closer distance between ground electrode and structure, (5) shorter horizontal electrode distance. The distribution of the electric potential around the electrodes and underground structure is analyzed to provide a better understanding of the measured electrical resistance. As engineering purpose, the empirical equation is proposed to calculate maximum detection depth as first approximation.

Keywords

Acknowledgement

This research work was funded by Korea Electric Power Corporation, grant number R21SA02.

References

  1. Abdelmawla, A., Ma, S., Yang, J.J. and Kim, S.S. (2023), "Subsurface anomaly detection utilizing synthetic GPR images and deep learning model", Geomech. Eng., 33(2), 203-209. https://doi.org/10.12989/gae.2023.33.2.203
  2. Cardarelli, E., Di Filippo, G. and Tuccinardi, E. (2006), "Electrical resistivity tomography to detect buried cavities in Rome: a case study", Near Surface Geophys., 4(6), 387-392. https://doi.org/10.3997/1873-0604.2006012.
  3. Cardarelli, E., Cercato, M., Cerreto, A. and Di Filippo, G. (2010), "Electrical resistivity and seismic refraction tomography to detect buried cavities", Geophys. Prospect., 58(4), 685-695. https://doi.org/10.1111/j.1365-2478.2009.00854.x.
  4. Chhun, K.T. and Yune, C.Y. (2023), "Evaluation of strength characteristics of cement-stabilized soil using the electrical resistivity measurement", Geomech. Eng., 33(3), 261-269. https://doi.org/10.12989/gae.2023.33.3.261.
  5. COMSOL Inc. (2023), http://www.comsol.com
  6. Fasani, G.B., Bozzano, F., Cardarelli, E. and Cercato, M. (2013), "Underground cavity investigation within the city of Rome (Italy): A multi-disciplinary approach combining geological and geophysical data", Eng. Geol., 152(1), 109-121. https://doi.org/10.1016/j.enggeo.2012.10.006
  7. Flechsig, C., Fabig, T., Rucker, C. and Schutze, C. (2010), "Geoelectrical investigations in the Cheb Basin/W-Bohemia: an approach to evaluate the near-surface conductivity structure", Studia Geophysica et Geodaetica, 54, 443-463. https://doi.org/10.1007/s11200-010-0026-6.
  8. Chu, T.K. and Ho, C.Y. (1978), "Thermal conductivity and electrical resistivity of eight selected AISI stainless steels", Therm. Conductivity 15, 79-104. https://doi.org/10.1007/978-1-4615-9083-5_12.
  9. Hong, C.H., Chong, S.H., Hong, E.S., Cho, G.C. and Kwon, T.H. (2019), "Theoretical and experimental studies on influence of electrode variations in electrical resistivity survey for tunnel ahead prediction", J. Korean Tunn. Undergr. Sp. Assoc., 21(2), 267-278. .https://doi.org/10.9711/KTAJ.2019.21.2.267
  10. Hong, C.H., Chong, S.H. and Cho, G.C. (2020), "Electrical resistivity measurement with spherical-tipped cylindrical electrode embedded on two layers", Materials, 13(9), 2144. https://doi.org/10.3390/ma13092144.
  11. Hong, C.H., Kim, J.S. and Chong, S.H. (2022), "Theoretical resistance in cylindrical electrodes with conical tip", Geomech. Eng., 30(4), 337-343. https://doi.org/10.12989/gae.2022.30.4.337.
  12. Kim, T.Y., Lee, S.H., Ryu, H.H. and Chong, S.H. (2023), "Influence of electrode geometry on electrical resistivity survey: Numerical study", J. Korean Tunn. Undergr. Sp. Assoc., 25(2), 101-120. https://doi.org/10.9711/KTAJ.2023.25.2.101.
  13. Liu, S.Y., Du, Y.J., Han, L. and Gu, M. (2008), "Experimental study on the electrical resistivity of soil-cement admixtures", Environ. Geol., 54, 1227-1233. https://doi.org/10.1007/s00254-007-0905-5
  14. Ma, Z. and Qian, R. (2020), "Overview of seismic methods for urban underground space", Interpretation, 8(4), SU19-SU30. https://doi.org/10.1190/INT-2020-0044.1.
  15. Melo, L.B.B.d., Silva, B.M., Peixoto, D.S., Chiarini, T.P.A., Oliveira, G.C.d. and Curi, N. (2021), "Effect of compaction on the relationship between electrical resistivity and soil water content in Oxisol", Soil Tillage Res., 208, 104876. https://doi.org/10.1016/j.still.2020.104876.
  16. Neal, A. (2004), "Ground-penetrating radar and its use in sedimentology: principles, problems and progress", Earth-Sic. Rev., 66(3-4), 261-330. https://doi.org/10.1016/j.earscirev.2004.01.004.
  17. Olabode, O.P. and San, L.H. (2023), "Analysis of soil electrical resistivity and hydraulic conductivity relationship for characterisation of lithology inducing slope instability in residual soil", Int. J. Geo-Eng., 14(1), 7. https://doi.org/10.1186/s40703-023-00184-z
  18. Ramesh, S. and Arof, A.K. (2000), "Electrical conductivity studies of polyvinyl chloride-based electrolytes with double salt system", Solid State Ionics, 136, 1197-1200. https://doi.org/10.1016/S0167-2738(00)00598-1.
  19. Roodposhti, H.R., Hafizi, M.K., Kermani, M.R.S. and Nik, M.R.G. (2019), "Electrical resistivity method for water content and compaction evaluation, a laboratory test on construction material", J. Appl. Geophys., 168, 49-58. https://doi.org/10.1016/j.jappgeo.2019.05.015
  20. Ryu, H.H., Cho, S.A., Kim, K.Y. and Cho, G.C. (2017), "Exploration of underground utilities using method predicting an anomaly(II) - field application", J. Korean Tunn. Undergr. Sp. Assoc., 19(3), 449-461. https://doi.org/10.9711/KTAJ.2017.19.3.449
  21. Ryu, H.H., Kim, K.Y., Lee, K.R., Lee, D.S. and Cho, G.C. (2015), "Exploration of underground utilities using method predicting an anomaly", J. Korean Tunn. Undergr. Sp. Assoc., 17(3), 205-214. https://doi.org/10.9711/KTAJ.2015.17.3.205
  22. Samouelian, A., Cousin, I., Tabbagh, A., Bruand, A. and Richard, G. (2005), "Electrical resistivity survey in soil science: a review", Soil Tillage Res., 83(2), 173-193. https://doi.org/10.1016/j.still.2004.10.004
  23. Taiwo, S.M., Lee, J.S. and Yoon, H.K. (2017), "Analytical and experimental studies to obtain electrical resistivity in a small-scaled laboratory test", Geophysics, 82(5), 267-275. https://doi.org/10.1190/geo2016-0491.1
  24. Venkateswarlu, B. and Tewari, V.C. (2014), "Geotechnical Applications of Ground Penetrating Radar (GPR)", J.. Ind. Geol. Cong, 6(1), 35-46.
  25. Yang, B., Egbert, G.D., Zhang, H., Meqbel, N. and Hu, X. (2021), "Electrical resistivity imaging of continental United States from three-dimensional inversion of EarthScope USArray magnetotelluric data", Earth Planet. Sci. Lett., 576, 117244. https://doi.org/10.1016/j.epsl.2021.117244.