Acknowledgement
This research work was funded by Korea Electric Power Corporation, grant number R21SA02.
References
- Abdelmawla, A., Ma, S., Yang, J.J. and Kim, S.S. (2023), "Subsurface anomaly detection utilizing synthetic GPR images and deep learning model", Geomech. Eng., 33(2), 203-209. https://doi.org/10.12989/gae.2023.33.2.203
- Cardarelli, E., Di Filippo, G. and Tuccinardi, E. (2006), "Electrical resistivity tomography to detect buried cavities in Rome: a case study", Near Surface Geophys., 4(6), 387-392. https://doi.org/10.3997/1873-0604.2006012.
- Cardarelli, E., Cercato, M., Cerreto, A. and Di Filippo, G. (2010), "Electrical resistivity and seismic refraction tomography to detect buried cavities", Geophys. Prospect., 58(4), 685-695. https://doi.org/10.1111/j.1365-2478.2009.00854.x.
- Chhun, K.T. and Yune, C.Y. (2023), "Evaluation of strength characteristics of cement-stabilized soil using the electrical resistivity measurement", Geomech. Eng., 33(3), 261-269. https://doi.org/10.12989/gae.2023.33.3.261.
- COMSOL Inc. (2023), http://www.comsol.com
- Fasani, G.B., Bozzano, F., Cardarelli, E. and Cercato, M. (2013), "Underground cavity investigation within the city of Rome (Italy): A multi-disciplinary approach combining geological and geophysical data", Eng. Geol., 152(1), 109-121. https://doi.org/10.1016/j.enggeo.2012.10.006
- Flechsig, C., Fabig, T., Rucker, C. and Schutze, C. (2010), "Geoelectrical investigations in the Cheb Basin/W-Bohemia: an approach to evaluate the near-surface conductivity structure", Studia Geophysica et Geodaetica, 54, 443-463. https://doi.org/10.1007/s11200-010-0026-6.
- Chu, T.K. and Ho, C.Y. (1978), "Thermal conductivity and electrical resistivity of eight selected AISI stainless steels", Therm. Conductivity 15, 79-104. https://doi.org/10.1007/978-1-4615-9083-5_12.
- Hong, C.H., Chong, S.H., Hong, E.S., Cho, G.C. and Kwon, T.H. (2019), "Theoretical and experimental studies on influence of electrode variations in electrical resistivity survey for tunnel ahead prediction", J. Korean Tunn. Undergr. Sp. Assoc., 21(2), 267-278. .https://doi.org/10.9711/KTAJ.2019.21.2.267
- Hong, C.H., Chong, S.H. and Cho, G.C. (2020), "Electrical resistivity measurement with spherical-tipped cylindrical electrode embedded on two layers", Materials, 13(9), 2144. https://doi.org/10.3390/ma13092144.
- Hong, C.H., Kim, J.S. and Chong, S.H. (2022), "Theoretical resistance in cylindrical electrodes with conical tip", Geomech. Eng., 30(4), 337-343. https://doi.org/10.12989/gae.2022.30.4.337.
- Kim, T.Y., Lee, S.H., Ryu, H.H. and Chong, S.H. (2023), "Influence of electrode geometry on electrical resistivity survey: Numerical study", J. Korean Tunn. Undergr. Sp. Assoc., 25(2), 101-120. https://doi.org/10.9711/KTAJ.2023.25.2.101.
- Liu, S.Y., Du, Y.J., Han, L. and Gu, M. (2008), "Experimental study on the electrical resistivity of soil-cement admixtures", Environ. Geol., 54, 1227-1233. https://doi.org/10.1007/s00254-007-0905-5
- Ma, Z. and Qian, R. (2020), "Overview of seismic methods for urban underground space", Interpretation, 8(4), SU19-SU30. https://doi.org/10.1190/INT-2020-0044.1.
- Melo, L.B.B.d., Silva, B.M., Peixoto, D.S., Chiarini, T.P.A., Oliveira, G.C.d. and Curi, N. (2021), "Effect of compaction on the relationship between electrical resistivity and soil water content in Oxisol", Soil Tillage Res., 208, 104876. https://doi.org/10.1016/j.still.2020.104876.
- Neal, A. (2004), "Ground-penetrating radar and its use in sedimentology: principles, problems and progress", Earth-Sic. Rev., 66(3-4), 261-330. https://doi.org/10.1016/j.earscirev.2004.01.004.
- Olabode, O.P. and San, L.H. (2023), "Analysis of soil electrical resistivity and hydraulic conductivity relationship for characterisation of lithology inducing slope instability in residual soil", Int. J. Geo-Eng., 14(1), 7. https://doi.org/10.1186/s40703-023-00184-z
- Ramesh, S. and Arof, A.K. (2000), "Electrical conductivity studies of polyvinyl chloride-based electrolytes with double salt system", Solid State Ionics, 136, 1197-1200. https://doi.org/10.1016/S0167-2738(00)00598-1.
- Roodposhti, H.R., Hafizi, M.K., Kermani, M.R.S. and Nik, M.R.G. (2019), "Electrical resistivity method for water content and compaction evaluation, a laboratory test on construction material", J. Appl. Geophys., 168, 49-58. https://doi.org/10.1016/j.jappgeo.2019.05.015
- Ryu, H.H., Cho, S.A., Kim, K.Y. and Cho, G.C. (2017), "Exploration of underground utilities using method predicting an anomaly(II) - field application", J. Korean Tunn. Undergr. Sp. Assoc., 19(3), 449-461. https://doi.org/10.9711/KTAJ.2017.19.3.449
- Ryu, H.H., Kim, K.Y., Lee, K.R., Lee, D.S. and Cho, G.C. (2015), "Exploration of underground utilities using method predicting an anomaly", J. Korean Tunn. Undergr. Sp. Assoc., 17(3), 205-214. https://doi.org/10.9711/KTAJ.2015.17.3.205
- Samouelian, A., Cousin, I., Tabbagh, A., Bruand, A. and Richard, G. (2005), "Electrical resistivity survey in soil science: a review", Soil Tillage Res., 83(2), 173-193. https://doi.org/10.1016/j.still.2004.10.004
- Taiwo, S.M., Lee, J.S. and Yoon, H.K. (2017), "Analytical and experimental studies to obtain electrical resistivity in a small-scaled laboratory test", Geophysics, 82(5), 267-275. https://doi.org/10.1190/geo2016-0491.1
- Venkateswarlu, B. and Tewari, V.C. (2014), "Geotechnical Applications of Ground Penetrating Radar (GPR)", J.. Ind. Geol. Cong, 6(1), 35-46.
- Yang, B., Egbert, G.D., Zhang, H., Meqbel, N. and Hu, X. (2021), "Electrical resistivity imaging of continental United States from three-dimensional inversion of EarthScope USArray magnetotelluric data", Earth Planet. Sci. Lett., 576, 117244. https://doi.org/10.1016/j.epsl.2021.117244.