• Title/Summary/Keyword: elastic supported

Search Result 445, Processing Time 0.02 seconds

Study on the Stability of Elastic Material Subjected to Dry Friction Force (건성마찰력을 받는 탄성재료의 안정성에 관한 연구)

  • Ko, Jun-Bin;Jang, Tag-Soon;Ryu, Si-Ung
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.2
    • /
    • pp.143-148
    • /
    • 2004
  • This paper discussed on the stability of elastic material subjected to dry friction force for low boundary conditions: clamped free, clamped-simply supported, simply supported-simply supported, clamped-clamped. It is assumed in this paper that the dry frictional force between a tool stand and an elastic material can be modeled as a distributed follower force. The friction material is modeled for simplicity into a Winkler-type elastic foundation. The stability of beams on the elastic foundation subjected to distribute follower force is formulated by using finite element method to have a standard eigenvalue problem. It is found that the clamped-free beam loses its stability in the flutter type instability, the simply supported-simply supported beam loses its stability in the divergence type instability and the other two boundary conditions the beams lose their stability in the divergence-flutter type instability.

Procedures for determination of elastic curve of simply and multiple supported beams

  • Biro, Istvan;Cveticanin, Livija
    • Structural Engineering and Mechanics
    • /
    • v.60 no.1
    • /
    • pp.21-30
    • /
    • 2016
  • In this paper two procedures for determination of the elastic curve of the simply and multiple supported beams are developed. Determination of the elastic curve is complex as it requires to solve a strong nonlinear differential equation with given boundary conditions. For numerical solution the initial guess of the slope at the end of the beam is necessary. Two procedures for obtaining of the initial guess are developed: one, based on transformation of the supported beam into a clamped-free one, and second, on the linearization of the problem. Procedures are applied for calculating of elastic curve of a simply supported beam and a beam with three supports. Obtained results are compared. Advantages and disadvantages of both methods are discussed. It is proved that both suggested procedures give us technically accurate results.

The receding contact problem of two elastic layers supported by two elastic quarter planes

  • Yaylaci, Murat;Birinci, Ahmet
    • Structural Engineering and Mechanics
    • /
    • v.48 no.2
    • /
    • pp.241-255
    • /
    • 2013
  • The receding contact problem for two elastic layers whose elastic constants and heights are different supported by two elastic quarter planes is considered. The lower layer is supported by two elastic quarter planes and the upper elastic layer is subjected to symmetrical distributed load whose heights are 2a on its top surface. It is assumed that the contact between all surfaces is frictionless and the effect of gravity force is neglected. The problem is formulated and solved by using Theory of Elasticity and Integral Transform Technique. The problem is reduced to a system of singular integral equations in which contact pressures are the unknown functions by using integral transform technique and boundary conditions of the problem. Stresses and displacements are expressed depending on the contact pressures using Fourier and Mellin formula technique. The singular integral equation is solved numerically by using Gauss-Jacobi integration formulation. Numerical results are obtained for various dimensionless quantities for the contact pressures and the contact areas are presented in graphics and tables.

Numerical method to determine the elastic curve of simply supported beams of variable cross-section

  • Biro, Istvan;Cveticanin, Livija;Szuchy, Peter
    • Structural Engineering and Mechanics
    • /
    • v.68 no.6
    • /
    • pp.713-720
    • /
    • 2018
  • In this paper a new numerical method to determine the elastic curve of the simply supported beams of variable cross-section is demonstrated. In general case it needs to solve linear or small nonlinear second order differential equations with prescribed boundary conditions. For numerical solution the initial values of the slope and the deflection of the end cross-section of the beam is necessary. For obtaining the initial values a lively procedure is developed: it is a special application of the shooting method because boundary value problems can be transformed into initial value problems. As a result of these transformations the initial values of the differential equations are obtained with high accuracy. Procedure is applied for calculating of elastic curve of a simply supported beam of variable cross-section. Results of these numerical procedures, analytical solution of the linearized version and finite element method are compared. It is proved that the suggested procedure yields technically accurate results.

Structural Analysis of Elastic supported Special Orthotropic Composite Plates (탄성지지된 특별직교 이방성 복합판의 구조해석)

  • 김덕현;박제선;심도식;이정호
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1997.04a
    • /
    • pp.200-210
    • /
    • 1997
  • This paper presents the result of analysis of special orthotropic plates supported by elastic foundation and simple supported edges. Convergence and accuracy of the solution are examined and it is verified that the solution obtained is sufficiently accurate. The effect of the spring constant, k, on deflection is studied.

  • PDF

Comparison Study of Elastic Catenary and Elastic Parabolic Cable Elements for Nonlinear Analysis of Cable-Supported Bridges (케이블교량의 비선형해석을 위한 탄성현수선 및 탄성포물선 케이블요소의 비교연구)

  • Song, Yo Han;Kim, Moon Young
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.31 no.5A
    • /
    • pp.361-367
    • /
    • 2011
  • This study introduces an elastic parabolic cable element for initial shaping analysis of cable-supported structures. First, an elastic catenary cable theory is shortly summarized by deriving the compatibility condition and the tangent stiffness matrices of the elastic catenary cable element. Next, the force-deformation relations and the tangent stiffness matrices of the elastic parabolic cable elements are derived and discussed under the assumption that sag configuration under self-weights is small. In addition the equivalent cable tension is defined in the chord-wise direction. Finally, to demonstrate the accuracy of the elastic parabolic cable element, nonlinear relationships of nominal cable tension-chord length and nominal cable tension-tangential stiffness for a single element are presented and compared with results using an elastic catenary cable theory as the slope is varied.

Buckling of Fixedly Supported Orthotropic Plate under In-plane Linearly Distributed Forces (면내 선형분포하중을 받는 고정지지된 직교이방성판의 좌굴)

  • 정재호;채수하;남정훈;윤순종
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2000.04a
    • /
    • pp.5-8
    • /
    • 2000
  • This paper presents the results of an elastic buckling analysis of orthotropic plate under in-plane linearly distributed forces. The analytical solution for the orthotropic plate whose boundaries were assumed to be simply supported was derived in the previous work. In this study the loaded edges of plate are assumed to be simply supported and other two edges are assumed to be fixed. For the buckling analysis Rayleigh-Ritz method is employed. Graphical form of results for finding the elastic buckling strength of orthotropic plate under in-plane linearly distributed forces is presented.

  • PDF

Effects of the Application of Elastic Compression Stockings on Edema and Pain of Lower Extremity in Hospital Nurses (근무 중 탄력압박스타킹 착용이 간호사의 하지부종 및 통증에 미치는 효과)

  • Lee, Byung-Sook;Kim, Yun-Suk
    • Journal of Korean Academy of Nursing Administration
    • /
    • v.12 no.3
    • /
    • pp.415-423
    • /
    • 2006
  • Purpose: This study was to identify the effects of the application of elastic compression stockings during the hours of work on edema and pain of lower extremity in hospital nurses. Method: The participants were categorized into three groups, 15 for an experimental group of the application of Thigh-Length (T-L) elastic compression stocking, 15 for another experimental group of the application of Knee-Length(K-L) elastic compression stocking and 15 for a control group. The data were analyzed by $X^{2}-test$, ANOVA, Repeated Measures ANOVA and Sheffe-test using SPSS Win 12.0 program. Result: As a result of the study "There are significant differences in lower extremity edema among three groups." was partly supported. "There are significant differences in girth of ankle after work among three groups." was supported(Rt.:F=4.56, p=.016; Lt.: F=5.82, p=.006). "There are significant differences in girth of calf after work among three groups." was not supported(Rt. : F=1.76, p=.183; Lt. : F=1.94, p=.155) "There are significant differences in lower extremity pain after work among three groups." was supported(Rt. : F=95.33, p=.000; Lt. : F=81.33, p=.000). Conclusion: The results of this study revealed that the application of elastic compression stockings during the hours of work is effective for the relief of edema and pain of lower extremity in hospital nurses.

  • PDF

Numerical analysis of simply supported two-way reinforced concrete slabs under fire

  • Wenjun Wang;Binhui Jiang;Fa-xing Ding;Zhiwu Yu
    • Computers and Concrete
    • /
    • v.31 no.6
    • /
    • pp.469-484
    • /
    • 2023
  • The response mechanism of simply supported two-way reinforced concrete (RC) slabs under fire was numerically studied from the view of stress redistribution using the finite element software ABAQUS. Results show that: (1) Simply supported two-way RC slabs undergo intense stress redistribution, and their responses show four stages, namely elastic, elastic-plastic, plastic and tensile membrane stages. There is no cracking in the fire area of the slabs until the tensile membrane stage. (2) The inverted arch effect and tensile membrane effect improve the fire resistance of the two-way slabs. When the deflection is L/20, the slab is in an inverted arch effect state, and the slab still has a good deflection reserve. The deformation rate of the slab in the tensile membrane stage is smaller than that in the elastic-plastic and plastic stages. (3) Fire resistance of square slabs is better than that of rectangular slabs. Besides, increasing the reinforcement ratio or slab thickness improves the fire resistance of the slabs. However, an increase of cover thickness has little effect on the fire resistance of two-way slabs. (4) Compared with one-way slabs, the time for two-way slabs to enter the plastic and tensile cracking stage is postponed, and the deformation rate in the plastic and tensile cracking stage is also slowed down. (5) The simply supported two-way RC slabs can satisfy with the requirements of a class I fire resistance rating of 90 min without additional fire protection.

Thermo-Magneto-Elastic Instability of Ferromagnetic Plates (강자성 판의 열-자탄성학적 불안정성)

  • 이종세;왕성철
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2002.10a
    • /
    • pp.153-160
    • /
    • 2002
  • Based on a generalized variational principle for magneto-thermo-elasticity, a theoretical model is proposed to describe the coupled magneto-thermo-elastic interaction in soft ferromagnetic plates. Using the linearized theory of magneto-elasticity and perturbation technique, we analyze the magneto-elastic and magneto-thermo- elastic instability of simply supported ferromagnetic plates subjected to thermal and magnetic fields. A nonlinear finite element procedure is developed next to simulate the magneto-thermo-elastic behavior of a finite-size ferromagnetic plates. The effects of thermal and magnetic fields on the magneto-thermo-elastic bending and buckling is investigated in some detail.

  • PDF