DOI QR코드

DOI QR Code

Numerical analysis of simply supported two-way reinforced concrete slabs under fire

  • Wenjun Wang (School of Civil Engineering, Central South University) ;
  • Binhui Jiang (School of Civil Engineering, Central South University) ;
  • Fa-xing Ding (School of Civil Engineering, Central South University) ;
  • Zhiwu Yu (School of Civil Engineering, Central South University)
  • Received : 2021.11.30
  • Accepted : 2022.12.09
  • Published : 2023.06.25

Abstract

The response mechanism of simply supported two-way reinforced concrete (RC) slabs under fire was numerically studied from the view of stress redistribution using the finite element software ABAQUS. Results show that: (1) Simply supported two-way RC slabs undergo intense stress redistribution, and their responses show four stages, namely elastic, elastic-plastic, plastic and tensile membrane stages. There is no cracking in the fire area of the slabs until the tensile membrane stage. (2) The inverted arch effect and tensile membrane effect improve the fire resistance of the two-way slabs. When the deflection is L/20, the slab is in an inverted arch effect state, and the slab still has a good deflection reserve. The deformation rate of the slab in the tensile membrane stage is smaller than that in the elastic-plastic and plastic stages. (3) Fire resistance of square slabs is better than that of rectangular slabs. Besides, increasing the reinforcement ratio or slab thickness improves the fire resistance of the slabs. However, an increase of cover thickness has little effect on the fire resistance of two-way slabs. (4) Compared with one-way slabs, the time for two-way slabs to enter the plastic and tensile cracking stage is postponed, and the deformation rate in the plastic and tensile cracking stage is also slowed down. (5) The simply supported two-way RC slabs can satisfy with the requirements of a class I fire resistance rating of 90 min without additional fire protection.

Keywords

Acknowledgement

The research described in this paper was financially supported by the National Natural Science Foundation of China (Grant No. 51578548) and Science Fund for Distinguished Young Scholars of Hunan (Grant No.2019JJ20029) and Hunan Provincial Innovation Foundation For Postgraduate (Grant No. CX20210262).

References

  1. ASTM Test Method E119 (2002), Standard Test Methods for Fire Tests of Building Construction and Materials, American Society for Testing and Materials, West Conshohocken, PA, USA.
  2. Abu, A.K., Burgess, I.W. and Plank, R.J.(2013), "Tensile membrane action of thin slabs exposed to thermal gradients", J. Eng. Mech., 139(11), 1497-1507. https://doi.org/10.1061/(ASCE)EM.1943-7889.0000597.
  3. Bailey, C.G. and Toh, W.S. (2007), "Small-scale concrete slab tests at ambient and elevated temperatures", Eng. Struct., 29(10), 2775-2791. https://doi.org/10.1016/j.engstruct.2007.01.023.
  4. BSI (1987), British Standard 476: Fire Tests on Building Materials and Structures, Part 20: Method for Determination of the Fire Resistance of Elements of Construction (General Principles), British Standards Institution, London, UK.
  5. Bamonte, P., Felicetti, R. and Gambarova, P.G, (2009), "Punching shear in fire-damaged reinforced concrete slabs", ACI Spec. Publ, 265, 345-366. https://doi.org/10.14359/51663303.
  6. Bamonte, P., Felicetti, R. and Gambarova, P.G. (2012), "Punching shear strength of R/C slabs subjected to fire", Proceedings of the 7th International Conference on Structures in Fire-SiF, Zurich, Switzerland, June.
  7. Burgess, I. and Sahin, M. (2018), "Tensile membrane action of lightly-reinforced rectangular composite slabs in fire", Struct., 16, 176-197. https://doi.org/10.1016/j.istruc.2018.09.011.
  8. CECS200 (2006), Technical Code for Fire Safety of Steel Structure in Buildings, China Planning Press, Beijing, China.
  9. Ding, F.X. and Yu, Z.W. (2006), "Behavior of concrete and circular concrete-filled steel tube columns at constant high temperatures", J. Cent. South Univ., 13(6), 726-732. https://doi.org/10.1007/s11771-006-0022-8.
  10. Ding, F.X., Li, Z., Cheng, S.S. and Yu, Z.W. (2018), "Stress redistribution of simply supported reinforced concrete beams under fire conditions", J. Cent. South Univ., 25(9), 2093-2106. https://doi.org/10.1007/s11771-018-3899-0.
  11. Diaz, R.A.S. (2018), "Analise numerica da resistencia a puncao de lajes lisas protendidas com cabos nao aderentes", Thesis, University of Campinas, Campinas, Brazil.
  12. Dzolev, I.M., Cvetkovska, M.J., Ladinovic, D.Z. and Radonjanin, V.S. (2018), "Numerical analysis on the behaviour of reinforced concrete frame structures in fire", Comput. Concrete., 21(6), 637-647. https://doi.org/10.12989/cac.2018.21.6.637.
  13. Ding, F.X., Wang, W.J., Jiang, B.H., Wang, L.P. and Liu, X.M. (2021), "Numerical analysis of simply supported one-way reinforced concrete slabs under fire condition", Comput. Concrete., 27(4), 355-367. https://doi.org/10.12989/cac.2021.27.4.355.
  14. Dong, Y.L. and Fang, Y.Y. (2010), "Determination of tensile membrane effects by segment equilibrium", Mag. Concrete Res., 62(1), 17-23. https://doi.org/10.1680/macr.2008.62.1.17.
  15. Ellingwood, B. and Lin, T.D. (1991), "Flexure and shear behavior of concrete beams during fires", J. Struct. Eng., 117(2), 440-458. https://doi.org/10.1061/(ASCE)0733-9445(1991)117:2(440).
  16. Eurocode 2 (2004), Design of Concrete Structures-Part1.2: General Rules-Structural Fire Design; BS EN1992-1-2, British Standard Institution, London, UK.
  17. Eurocode 3 (2005), Design of Steel Structures-Part1.2: General Rules-Structural Fire Design; BS EN 1993-1-2, British Standard Institution, London, UK.
  18. Eurocode 4 (2005), Design of Composite Steel and Concrete Structures-Part1.2: General Rules-Structural Fire Design; BS EN 1994-1-2, British Standard Institution, London, UK.
  19. Ellobody, E. and Bailey, C.G. (2009), "Modelling of unbonded post-tensioned concrete slabs under fire conditions", Fire Saf. J., 44(2), 159-167. https://doi.org/10.1016/j.firesaf.2008.05.007.
  20. Guo, Z.H. and Shi, X.D. (2011), Experiment and Calculation of Reinforced Concrete at Elevated Temperature, Tsinghua University Press, Beijing, China.
  21. GB50016-2014 (2018), Code for Fire Protection Design of Buildings, China Standards Press, Beijing, China.
  22. Mahmoud, A.S. (2020), "Punching shear behavior of reinforced concrete slabs under fire using finite elements", J. Eng., 26(5), 106-127. https://doi.org/10.31026/j.eng.2020.05.08.
  23. Han, L.H., Xu, L. and Zhao, X.L. (2003), "Tests and analysis on the temperature field within concrete filled steel tubes with or without protection subjected to a standard fire", Adv. Struct. Eng., 6(2), 121-133. https://doi.org/10.1260/136943303769013219.
  24. Huang, Z.H., Burgess, I.W. and Plank, R.J. (2003a), "Modeling membrane action of concrete slabs in composite buildings in fire. I: Theoretical development", J. Struct. Eng., 129(8), 1093-1102. https://doi.org/10.1061/(ASCE)0733-9445(2003)129:8(1093).
  25. Huang, Z.H., Burgess, I.W. and Plank, R.J. (2003b), "Modeling membrane action of concrete slabs in composite buildings in fire. II: Validations", J. Struct. Eng., 129(8), 1103-1112. DOI:10.31026/j.eng.2020.05.08.
  26. Hawileh, R.A., Naser, M., Zaidan, W. and Rasheed, H.A. (2009), "Modeling of insulated CFRP-strengthened reinforced concrete T-beam exposed to fire", Eng. Struct., 31(12), 3072-3079. https://doi.org/10.1016/j.engstruct.2009.08.008.
  27. Hawileh, R.A. and Naser, M. (2012), "Thermal-stress analysis of RC beams reinforced with GFRP bars", Compos. Part B Eng., 43(5), 2135-2142. https://doi.org/10.1016/j.compositesb.2012.03.004.
  28. Hawileh, R.A. and Kodur, V. (2018). "Performance of reinforced concrete slabs under hydrocarbon fire exposure" Tunnel. Undergr. Sp. Technol., 77, 177-187. https://doi.org/10.1016/j.tust.2018.03.024.
  29. Jiang, J. and Li, G.Q. (2018), "Parameters affecting tensile membrane action of reinforced concrete floors subjected to elevated temperatures", Fire Saf. J., 96, 59-73. https://doi.org/10.1016/j.firesaf.2017.12.006.
  30. Kang, H., Cheon, N.R., Lee, D.H., Lee, J., Kim, K.S. and Kim, H.Y. (2017), "P-M interaction curve for reinforced concrete columns exposed to elevated temperature", Comput. Concrete., 19(5), 537-544. https://doi.org/10.12989/cac.2017.19.5.537.
  31. Karaki, G., Hawileh, R.A. and Kodur, V. (2021), "Probabilistic-based approach for evaluating the thermal response of concrete slabs under fire loading", J. Struct. Eng., 117(2), 440-458. https://doi.org/10.1061/(ASCE)ST.1943-541X.0003039.
  32. ISO 834-1 (1999), Fire-Resistance Tests-Elements of Buildings Construction-Part1: General Requirements, Switzerland.
  33. Li, Y.Q., Ma, D.Z. and Xu, J. (1991), Fire Design Calculation and Construction Principle of Building Structure, China Architecture & Building Press, Beijing, China.
  34. Lie, T.T. (1994), "Fire resistance of circular steel columns filled with bar-reinforced concrete", J. Struct. Eng., 120(5), 1489-1509. https://doi.org/10.1061/(ASCE)0733-9445(1994)120:5(1489).
  35. Li, G.Q., Guo, S.X. and Zhou, H.S. (2007), "Modeling of membrane action in floor slabs subjected to fire", Eng. Struct., 29(6), 880-887. https://doi.org/10.1016/j.engstruct.2006.06.025.
  36. Lim, L. and Wade, C. (2002). "Experimental fire tests of two-way concrete slabs", Fire Engineering Research Report 02/12; University of Canterbury, Christchurch, New Zealand.
  37. Martin, D.M., Kirby, B.R. and O'Connor, M.A. (1997), Behaviour of Multi-Storey, Steel Framed Building Subjected to Natural Fire Effects, Office for Official Publications of the European Communities, Brussels, Belgium.
  38. Naser, M., Abu-Lebdeh, G. and Hawileh, R. (2012), "Analysis of RC T-beams strengthened with CFRP plates under fire loading using ANN", Constr. Build. Mater., 37, 301-309. https://doi.org/10.1016/j.conbuildmat.2012.07.001.
  39. Sun, J.X. and Gao, W. (1994), Synthetic Fire Prevention Design of Building, Tianjin Science & Technology Translation & Publishing Cooperation, Tianjin, China.
  40. Sadaghian, H. and Farzam, M. (2019), "Numerical investigation on punching shear of RC slabs exposed to fire", Comput. Concrete., 23(3), 217-233. https://doi.org/10.12989/cac.2019.23.3.217.
  41. Shen, P.S. and Liang, X.W. (2012), Concrete Structure Design, Higher Education Press, Beijing, China.
  42. Song, T.Y., Han, L.H. and Uy, B. (2010), "Performance of CFST column to steel beam joints subjected to simulated fire including the cooling phase", J. Constr. Steel Res., 66(4), 591-604. https://doi.org/10.1016/j.jcsr.2009.12.006.
  43. Song, T.Y. and Han, L.H. (2014), "Post-fire behaviour of concrete-filled steel tubular column to axially and rotationally restrained steel beam joint", Fire Saf. J., 69, 147-163. https://doi.org/10.1016/j.firesaf.2014.05.023.
  44. Wald, F., da Silva, L.S., Moore, D.B., Lennon, T., Chladna, M., Santiago, A., Benes, M. and Borges, L. (2006), "Experimental behaviour of a steel structure under natural fire", Fire Saf. J., 41(7), 509-522. https://doi.org/10.1016/j.firesaf.2006.05.006.
  45. Wang, Y., Dong, Y.L. and Zhou, G.C. (2013), "Nonlinear numerical modeling of two-way reinforced concrete slabs subjected to fire", Comput. Struct., 119, 23-36. https://doi.org/10.1016/j.compstruc.2012.12.029.
  46. Wang, Y., Yuan, G., Huang, Z., Lyv, J., Li, Z.Q. and Wang, T.Y. (2016), "Experimental study on the fire behaviour of reinforced concrete slabs under combined uni-axial in-plane and out-of-plane loads", Eng. Struct., 128, 316-332. https://doi.org/10.1016/j.engstruct.2016.09.054.
  47. Wang, Y., Bisby, L.A., Wang, T.Y., Yuan, G.L. and Baharudin, E. (2018), "Fire behaviour of reinforced concrete slabs under combined biaxial in-plane and out-of-plane loads", Fire Saf. J., 96, 27-45. https://doi.org/10.1016/j.firesaf.2017.12.004.
  48. Weerasinghe, P., Nguyen, K., Mendis, P. and Guerrieri, M. (2020), "Large-scale experiment on the behaviour of concrete flat slabs subjected to standard fire", J. Build. Eng., 30, 101255. https://doi.org/10.1016/j.jobe.2020.101255.
  49. Yang, H., Han, L.H. and Wang, Y.C. (2008), "Effects of heating and loading histories on post-fire cooling behaviour of concrete-filled steel tubular columns", J. Constr. Steel Res., 64(5), 556-570. https://doi.org/10.1016/j.jcsr.2007.09.007.
  50. Yang, H., Liu, F.Q., Zhang, S.M. and Lv, X.T. (2013a), "Experimental investigation of concrete-filled square hollow section columns subjected to non-uniform exposure", Eng. Struct., 48, 292-312. https://doi.org/10.1016/j.engstruct.2012.09.011.
  51. Yang, Z.N. (2013b), "Research on fire resistance of two-way reinforced concrete slabs with different edge restraints", Ph.D. Dissertation, Harbin Institute of Technology, Harbin, China.
  52. Zhang, N.S. and Li, G.Q. (2009), "An innovative analytical method for the membrane action of composite floor slabs in fire", China Civil Eng. J., 42(3), 29-35.
  53. Zayan, H.S., Farhan, J.A., Mahmoud, A.S. and AL-Somaydaii, J.A.A. (2017), "A parametric study and design equation of reinforced concrete deep beams subjected to elevated temperature", Proceedings of the 1st Global Civil Engineering Conference 1, Kuala Lumpur, Malaysia, July.
  54. Zhang, D.S., Dong, Y.L. and Fang, Y.Y. (2017). "Modification of segment equilibrium method through considering tensile membrane effects and its application in two-way concrete slabs", Eng. Mech., 34(3), 204-210. https://doi.org/10.6052/j.issn.1000-4750.2015.08.0664.
  55. Zhang, G., Kodur, V., Song, C.J., Hou, W. and He, S.H. (2020), "A numerical method for evaluating fire performance of prestressed concrete T bridge girders", Comput. Concrete, 25(6), 497-507. https://doi.org/10.12989/cac.2020.25.6.497.