• Title/Summary/Keyword: dual solutions

Search Result 156, Processing Time 0.029 seconds

An Efficient Multicast Routing Algorithm for Packet-Switched Networks

  • Chung, Sung-Jin;Hong, Sung-Pil;Park, Bum-Hwan
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 1998.10a
    • /
    • pp.397-400
    • /
    • 1998
  • This paper has a dual purpose. First, we consider a relaxation algorithm which seems to be particularly suitable for multicasting routing problems. We show that the algorithm has polynomial complexity. Second, to measure the quality of solutions in comparison to the optimal solutions over a wide range of network sizes for which the computation of the optimal costs is too excessive, we also propose a random graph generation scheme in which an asymptotic lower bound on the expected optimal cost can be computed as a function of network node size.

  • PDF

Efficiency Test in Possibilistic Multiobjective Linear Programming

  • Ida, Masaaki
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1998.06a
    • /
    • pp.506-511
    • /
    • 1998
  • In this paper we consider multiobjective linear programming problems with coefficients of the objective functions specified by possibility distributions. Possibly and necessarily efficient solution sets are defined as funny solution sets whose membership grades represent possibility and necessity degrees to which a feasible solution is efficient. Considering efficiency condition and its dual condition in ordinary multiobjective linear programming problem, we propose efficiency test methods based on an extreme ray generation method. Since the proposed methods can be put in the part of a bi-section method, we can develop calculation and methods of the degree of possible and necessary efficiency for feasible solutions.

  • PDF

REPRESENTATION OF THE GENERALIZED FUNCTIONS OF GELFAND AND SHILOV

  • Jae Young Chung;Sung Jin Lee
    • Communications of the Korean Mathematical Society
    • /
    • v.9 no.3
    • /
    • pp.607-616
    • /
    • 1994
  • I. M. Gelfand and G. E. Shilov [GS] introduced the Gelfand-Shilov spaces of type S, generalized type S and type W of test functions to investigate the uniqueness of the solutions of the Cauchy problems of partial differential equations. Using the heat kernel method Matsuzawa gave structure theorems for distributions, hyperfunctions and generalized functions in the dual space $(S^s_r)'$ of the Gelfand-Shilov space of type S in [M1, M2 and DM], respectively. Also, we gave structure theorems for ultradistributions, Fourier hyperfunctions in [CK, KCK], respectively.

  • PDF

A DISCONTINUOUS GALERKIN METHOD FOR THE CAHN-HILLIARD EQUATION

  • CHOO S. M.;LEE Y. J.
    • Journal of applied mathematics & informatics
    • /
    • v.18 no.1_2
    • /
    • pp.113-126
    • /
    • 2005
  • The Cahn-Hilliard equation is modeled to describe the dynamics of phase separation in glass and polymer systems. A priori error estimates for the Cahn-Hilliard equation have been studied by the authors. In order to control accuracy of approximate solutions, a posteriori error estimation of the Cahn-Hilliard equation is obtained by discontinuous Galerkin method.

EXPLICIT SOLUTIONS OF INFINITE QUADRATIC PROGRAMS

  • Sivakumar, K.C.;Swarna, J.Mercy
    • Journal of applied mathematics & informatics
    • /
    • v.12 no.1_2
    • /
    • pp.211-218
    • /
    • 2003
  • Let H be a Hilbert space, X be a real Banach space, A : H \longrightarrow X be an operator with D(A) dense in H, G: H \longrightarrow H be positive definite, $\chi$ $\in$ D(A) and b $\in$ H. Consider the quadratic programming problem: QP: Minimize $\frac{1}{2}$〈p, $\chi$〉 + 〈$\chi$, G$\chi$〉 subject to A$\chi$= b In this paper, we obtain an explicit solution to the above problem using generalized inverses.

PROPERTIES OF ELASTIC SYMBOLS AND CONSTRUCTION OF SOLUTIONS OF THE DIRICHLET PROBLEM

  • Kawashita, Mishio;Soga, Hideo
    • Communications of the Korean Mathematical Society
    • /
    • v.16 no.3
    • /
    • pp.399-404
    • /
    • 2001
  • We examine plane waves of the elastic reduced wave equation in the half-space, and show that linear combinations of them can cover all plane waves on the boundary. The proof is based on the complex analysis for the symbol in the (dual) variable in the normal direction to the boundary.

  • PDF

A Boundary Element Solution Approach for the Conjugate Heat Transfer Problem in Thermally Developing Region of a Thick Walled Pipe

  • Choi, Chang-Yong
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.12
    • /
    • pp.2230-2241
    • /
    • 2006
  • This paper presents a sole application of boundary element method to the conjugate heat transfer problem of thermally developing laminar flow in a thick walled pipe when the fluid velocities are fully developed. Due to the coupled mechanism of heat conduction in the solid region and heat convection in the fluid region, two separate solutions in the solid and fluid regions are sought to match the solid-fluid interface continuity condition. In this method, the dual reciprocity boundary element method (DRBEM) with the axial direction marching scheme is used to solve the heat convection problem and the conventional boundary element method (BEM) of axisymmetric model is applied to solve the heat conduction problem. An iterative and numerically stable BEM solution algorithm is presented, which uses the coupled interface conditions explicitly instead of uncoupled conditions. Both the local convective heat transfer coefficient at solid-fluid interface and the local mean fluid temperature are initially guessed and updated as the unknown interface thermal conditions in the iterative solution procedure. Two examples imposing uniform temperature and heat flux boundary conditions are tested in thermally developing region and compared with analytic solutions where available. The benchmark test results are shown to be in good agreement with the analytic solutions for both examples with different boundary conditions.

SIMULTANEOUS SWITCHING NOISE MINIMIZATION TECHNIQUE USING DUAL LAYER POWER LINE MUTUAL INDUCTORS (이중 층 파워 메탈구조의 상호 인덕터를 이용한 동시 스위칭 잡음 최소화 기법)

  • Lee, Yong-Ha;Kang, Sung-Mook;Moon, Gyu
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.39 no.6
    • /
    • pp.44-50
    • /
    • 2002
  • A novel technique for minimization of simultaneous switching noise is Presented. Dual Layer Power Line (DLPL) structure i:; newly proposed for a possible silicon realization of a mutual inductor, with which an instant large current in the power line is half-divided flowing through two different, but closely coupled, layers in opposite directions. This mutual inductance between two power layers enables us to significantly reduce the switching noise. SPICE simulations show that with a mutual coupling coefficient higher than 0.8, the switching noise reduces by 63% compared to the previously reported solutions. This DLPL technique can also be applied to PCB artworks.

A Dual Triangular Pyramidal Indentation Technique Based on FEA Solutions for Material Property Evaluation (유한요소해에 기초한 이중 삼각뿔 압입 물성평가법)

  • Kim, Min-Soo;Hyun, Hong-Chul;Lee, Jin-Haeng;Lee, Hyung-Yil
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.1
    • /
    • pp.17-28
    • /
    • 2012
  • In this study, we suggest a method for material property evaluation by dual-triangular pyramidal indenters using the reverse analysis. First, we demonstrated that load-displacement curves of conical and triangular pyramidal indenters are different for the same material. For this reason, an independent research on the triangular pyramidal indenter is needed. From FE indentation analyses on various materials, we then investigated the relationships among material properties, indentation parameters and load-displacement curves. From this, we established property evaluation formula using dual-triangular pyramidal indenters having two different half-included-angles. The approach provides the values of elastic modulus, yield strength and strain-hardening exponent within an average error of 3% for various materials.