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Abstract

In this paper we consider multiobjective linear programming problems with coeflicients of the objective
functious specified by possibility distributions. Possibly and necessarily efficient solution sets are defined as fuzzy
solution sets whose membership grades represent possibility and necessity degrees to which a feasible solution is

efficient

Considering efficiency condition and its dual condition in ordinary multiobjective linear programming

problem. we propose efficiency test methods based on an extreme ray generation method. Since the poposed
methods can be put in the part of a bi-section method, we can develop calculation mehtods of the degree of

possible and necessary efficiency for feasible solutions.
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1. Introduction

In practical application it is usually difficult to deter-
mine the coefficients of the objective functions of mul-
tiobjective linear programming problems because they
are specified subjectively by decision makers or analysts.
we consider multiobjective linear programming prob-
lems with coefficients of the objective functions spec-
ified by possibility distributions [7]. Solutions for the
problem are defined as two kinds of fuzzy sets. ie..
possibly efficient solution set and necessarily efficient
solution sct. Therefore, we need to calculate the de-
grees of possible or necessary efficiency for feasible so-
lutions. Efficient solution generation methods formerly
developed for usual nmltiobjective linear programming
problems require to solve linear programming problems
in efficiency test procedure [3],[9].[10]. Thus, in case of
higher dimensional problems. they need excessive com-
putational demand.

Considering efficiency condition and its dual con-
dition in ordinary multiohjective linear programming
problems. we propose effective efficiency test methods
based on an extreme ray gencration method. Since the
poposed methods can be put in the part of a bi-section
method. we can develop calculation mehtods of the de-
gree of possible and necessary efficiency for feasible solu-
tions. Finally, a numerical example is shown to demon-
strate our methods.

2. Possibilistic multiobjective linear
programming

2.1 Possibilistic objective function
A multiobjective linear programming problem is rep-

rescnted as

Maximize {Cr | x € F}.

F={v|AdAr=0b 20}, (1)

where C and A are p x n and m X n matrices. x and b
are n and m column vectors [3].[9],[10].

Different from usual linear programming with single
objective function, an optimal solution maximizing all
objective functions simultaneously does not necessarily
exist in a multiobjective linear programming problem.

For the problem efficient solution set EF is defined
by

EF ={x € F| thereis no «' € F such that

Cr' > Cal, (2)
where r > y means x; 2 y; for all / with at least one
strict inequality.

In many practical cases. the coefficients of the objec-
tive functions can not be specified exactly, because of
decision maker’s subjectivity and the other outer fac-
tors. However, it is often the case that the coefficients
can be specifed by possible ranges represented by fuzzy
sets or intervals.

When the coeflicients is specified by a fuzzy set re-
garded as a possibility distribution, the problem is called
a “possibilistic multiobjective linear programming prob-
lem™ [7]. A possibilistic multiobjective linear program-
ming problem is represented as

Maximize {®x | v € F}, (3)
wlere ¢ is p X n matrix whose components 6;;’s are
mutually independent possibilistic variables restricted
by L-R fuzzy numbers T,; = (c,’;, cﬁ,(l,L,, (15) with ref-
erence functions L;; and R;;. The membership function
of T'y; is /l["j(r‘).

Since 6;;'s are mutually indepeudent possibilistic
variables. we can define a fuzzy set T' which restrices
the p x n matrix ® as follows:

(4)

pr(C) = minpr, (ei))
i)

where (' is a p x n matrix whose (i, j)-component is ¢;;.
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2.2

Let P(x) be a set of p x n matrices with which = is
efficient, i.e..

Possible and necessary efficiency

P(r)={C| there is no x' € F such that
Cr' > Cr) (3)
Inuiguchi and Sakawa [7] introduced the concepts of
possibly and necessarily efficient solutions into the pos-
stbilistic muliobjective linear programming problem. In
the case of possibilistic multiobjective linear program-
ming. possibly and necessarily efficient solution sets ILS
Their membership func-
tions. pmis and pvs, can be defined as follows:

and NS become fuzzy sets.

(6)
(1)

pns(e) = sup{/lr(C) | C € P(x)}.
prvs{e) =inf{l —ur(C)| C ¢ P(x)}.

These equations can be transformed into more opera-

tional forms [7]:

(8)
(9)

pnste) = sup{h | [Tl 0 P() £ 0),
h

pns(e) =sup{h | [T-s € P(2)}.
h

If 1, is upper semi-continuous. the hi-level set [['] can
be represented as follows:

[C)i={C = (e:i;) | ¢y = L7 (h)dE

Sey e+ RLNAS),  (10)
where L}, and R}, are pseudo-inverses of the reference
functions L,; and R, [7].

2.3

If we fix the grade of membership N, all possible
ranges of c;, in equation (10) can be represented by
colosed intervals denoted by [Ii,. uy;] , ic.. the set T
becomes the following crisp set:

Interval objective function

= {C: (C'J) I [ij é Ciy g Ujj,

i=1,..., p.oyj=1,....n} (11)
Hence the problem (3) becomes a multiobjective lin-
ear programming with interval objective functions, or
called an“interval multiobjective linear programming
problem”. An interval multiobjective linear program-
ming problem is a special case of possibilistic multiob-
jective linear programming.

Accordingly, if we can effectively check efficiency for
feasible solutions in interval multiobjective linear pro-
gramming problems. then the nonlinear programming
problems. (8) and (9). can be solved by a bhi-section
method with respect to h and possible and necessary
efficiency tests. Namely, we fix the degree h, and check
the possible and nccessary efficiency conditions, i.e.,
[T]s N P(x) # @ and [T]i-» C P(x), until the grade
satisfies certain termination condition in the bi-section
method. Censequently. we obtain the possible and nec-
essary degrees for efficiency on the feasible solutions,
1e. pns(r) and pevs(r).

3. Interval multiobjective linear pro-
gramming problem
3.1 Possible and necessary efficinecy for inter-

val objective functions

In this section, we consider interval multiobjective
linear programming problems and their eficiency con-
dition.

Let C* be the 2" pxn matrix with respect to I' defined
as follows:

C’ =
T
Ly win hin un i In Up1
lia iy wr w2 iy I Upa
Iln Iln Iln I]n Uin I.?n Upn
(12)

We obtain the following theorem from the theorem in
[4]:

Theorem 1 Determining the possibly efficient solu-
tions for an interval multiobjective linear programmaing
problem is equivalent to solve

Mar {CPxjr € F}. (13)

On the other hand, for necessarily efficient solution,
Bitran obtained the following result [1].

Denote by Al the subset of matrices of I' having all
elements of each column at the upper bound or at the
lower hound. Hence, if C € M, for j = 1,...,n either
Cij=L;orC;=U; where L = (/;;), U= (u;;). The
maximun nuwmber of elements in Af is 2". Following
theorem was deduced:

Theorem 2 Determining the necessarily efficient solu-
tions for an interval multiobjective linear programmaing
problem s equivalent to solve

Moz {Cr|0xeF Ce M} (14)

The former problem (13) is a large problem as to
the matrix C?, and the latter problem (14) represents
a finite but large family of multiobjective linear pro-
gramming problems. Therefore, for both problems, it is
required to develop an effective algorithun for efficiency
test.

3.2

Now let B = B, xm be a nonsingular submatrix (also
called a basis) of A, and N be the remaining m x (n—m)
submatrix. Thus we can write (renumber the index if
necessary) A4 = (B, N).

We call x is a feasible basis of F when B~'6 2 0. Let
(Cg,Cx) be the matrices associated with B and V.

We have the following theorem for efficiency [3],[9]:

Efficiency condition

Theorem 3 A feasthle basis x 1s efficient. if and only
if the system

(CeB™'N —Cn) p <0.
H= (Ill"-~slln—rn)T 2 0

has no solution.
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Therefore,
P(r)={C =(Cp.Cn) €| thereisno u 20
such that (CsB™'N ~ Cn) 1 <0} (16)

We obtain the following theorem from Theorem 1 for
possible efficiency:

Theorem 4 A feasible basis v is possibly efficient if
and only of the system

(CHEB™'N = Clyp <0

H = (/’l ----- Hao—m )T 2 0, (17)

has no solution.

where (C};, CX;) are the matrices associated with B and
N.

On the other hand, the following theorem from The-
orem 2 for necessary efficiency was obtained [1]:

Theorem 5 A feassible basis v 1s necessarily efficient
if and only if. for all (Cg.Cn) € M. each system

(CoB™'N —Ux)i <0

o= (..., fm—n)' 20, (18)

has no solution.

3.3 Efficient condition test
We denote relative cost coefficient matrix for C at a
feasible basis x by

R=CpB™'N -Cxn (19)

As we saw in the previous section, the most essential
problem in Theorem 4 and 3 is how to check efficinecy
effectively for large or many relative cost coefficient ma-
trices.

Theorem 3 can he transformed into a linear program-
ming form [3].[9]:

Corollary 1 A feasible busts v 1s efficient, if and only
iof the optimal value of the problem

mar{es|Ru+Is=0. 420,520} (20)

18 zero.

where e = (1...., 1) and I is a p X p identity matrix.

This linear programming problem has been used for
efficiency test in former studies {3].19], however, we can
check efficiency in another forms for the problem. In
this paper. we consider efficiency condition in detail,
and propose various procedures for efficiency tests.

Next theorem is dedued directly from Theorem 3 and
the Farkas lemma. that is a dual representation of effi-
ciency condition:

Theorem 6 A feasible basis v is efficient, if and only
if the system

RT v 20, 1/:(1/1,...,1/,,)T>0 (21)

has a solution.

We do not use the lincar programmin problem in
Corollary 1 in order to check cfficiency, nevertheless. we
examune existance of a solution, i.e., extreme ray that
satisfies the inequality system in Theorem 3 and 6.

Hearafter, we say a matrix R is efficient on behalf of
that r is efficient.

4. Extreme ray generation

Generally, algorithms for enumerating all extreme
points of a polyhedron can be divided into two classes:
pivoting methods and nonpivoting methods [8]. All of
the nonpivoting methods can be viewd as variants of
the Double Description Method.

In the case where the coustraints Ar 2 0 subsume the
constraints »r 2 0, then the Double Description Method
is identical to the procednre given by Chernikova [2].
That algorithin generates all the extreme rays of a con-
vex polyhedral cone in the nonnegative orthant with
vertex at the origin. We shall accordingly concern owr-
selves with finding all the extreme rays of the form:

K ={w| Dw20,w 20}, (22)
where D is ny xn2. Consider the matrix (DT, I)T where
I 1s n2 x n2 identity matrix.

Chernikova's algorithm gives a series of traunsforma-
tion of this matrix that generates all the extreme rays
[2].[8]. At any stage of the process we denote the old
matrix by ¥ = (T, LT)T, and the new matrix being
generated denoted by ¥ The matrices I/ and L will al-
ways have ny and n., respectively; however. they will
in gencreal not have ny columns. They will have more
than n» columns in most cases, but if Ik lies in some
subspace of R"? they may have fewer than n. columns.
For w € R"?, we use the sysmbol (w) to denote the ray
{Aw, A 20} . Let Yi. and Y7 denote the i-th row and j-
th column of matrix Y, respectively. The Chernikova's
algorithm is as follows:

(Extreme ray generation method) [2].[8]

1. (a) If any row of I has all compounents negative,
then w = 0 is the only point in IV .

(b) If all the elements of I7 are nounegative. then
the columns of L are the cdges of I\'. i.e.. the
ray (L.;) is an edge of I\.

2. Choose the first row of U, say row r, with at least
one negative elements.

3. (a) Let R={ ]y 20} and v = |R| (ie.,
the number of elements of R). Then the first
v columns of the new matrix. ', are Y, (j €

R).

If Y has only two columns and y,1y2 < 0.
adjoin the column |y,2|¥Y1 + |y,1]Y to the 7
matrix. Go to step 5.

4 Let S = {(s.t) | yrsyrt < O.s < t}, ie.. the set
of all (unordered) pairs of columns of ¥~ whose el-
ements in row r have opposite signs. Let Iy be the
index set of all nonnegative rows of Y. For each
(s.t) € 5, find all i € Iy such that y;; = y;; = 0
Call this set I1(s, ). We now use some of the ele-
ments of S to create additional columns for ¥

(b)

(a) If Ii(s.t) = @, then Y, and Y¥; do not con-
tribute another column to the new matrix.

(b) If I # B, check to see if there is a « not
equal to either s or ¢, such that y,, = 0 for
all/ € I (s.t). If such a n exists, then Y, and
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17, do not contribute another column to the
new matirx. If no such w exists, then coose
ar, ax > 0 to satisfy ayy,s + aa2yrr = 0.
(one such choice is a1 = |ym|. a2 = |yrs]. )
Adjoin the column a; Y + a2Y,; to the new

matrix.
3. When all pairs in S have been examined, and the
additional columns (if any) have been added, we
Now let Y’
denote the matrix Y produced in procesing row »

say that row r has been processed.
and retrun to setp 1.

In the above algorithm. we have U = D L. Obviously
maximun number of iteration of the algorithm. ie.. the
number of row processes is ny.

5. Efficiency test based on extreme
ray generation

5.1

We apply the extreme ray generation method as de-
scribed in previous section to Theorem 3 and 6. We
propose following two efficiency tests.

Simple efficiency tests

( Efficiency test 1)

Let D = —R in “Extreme ray generation method”,
we process each row of D. 1.e.. each row of —R. At any
stage of the process, if an extreme ray (L.;) such that
U, > 0 is generated, then we find R is not efficient by
Theorem 3. On the other hand, at the final stage, if
there is no extreme ray that satisfies the condition in
Theorem 3. then we find R is efficient.

( Efficiency test 2 )

Let D = RT in “Extreme ray generation method™, we
process cacli row of D. t.c.. each column of R. At the
final stage of the process. if there is a common element
of the conc generated by extreme rays obtained by the
procedure and the strictly positive orthant. then we find
R is cfficient by Theoremn 6. On the other hand, if there
is no such element. then we find R is not efficient.

Above two tests are mutually independent, so two
efficiency tests can be executed in parallel at the same
time. Therefore we can test efficiency faster than the
previous method in Corollary 1.

Previous efficiency test method was based on simplex
method. then we must pivot until the optimal value is
obtained. Namely. we scarch a extreme ray that satisfies
the condition in Theorem 3 by depth first search.

On the other hand. owr proposed methods in this
scction search the ray by width first search (ie., row
processes and column processes on R) until we find the
extreme ray that satisfies the conditions in Theorem 3
and G. Therefore. we can easily discriminate a feasible
basis is efficient or not.

5.2 Consideration on R
In previous section. we proposed basic efficiency test

methods based on extreme ray generation method. In

this section, we consider the matrix R in detail in order
to propose more effective effictency test method.

At any stage of the extreme ray generation, we obtain
the following theorem with respect to columns of R from
Theorem 3:

Theorem 7 If there is a column j such thet R, 2 0.
we eliminate j's column of R, and denote a new matriz
R', then R is efficient is equivalent that R' is efficient.

Simirally we obtain the following from Theorem G:

Theorem 8 If there is a row ¢ such that R, £ 0, we
eliminate i's row of R, and denote a new matriz R,
then R is efficient is equivalent that R' is efficient.

By using above theorems, the matrix R that we should
check will be a reduction form.

We obtain the following theorem from Theorem 3:

Theorem 9 If there is a column j such that R.; <0,
then R 1is not efficient.

Simirally. from Theorem 6:

Theorem 10 If there is a row i such that R;. > 0, then
R 1is efficient.

Above theorem directly deduces the following corol-
lary:

Corollary 2 If there s a row ¢ such that R,. > 0 and
Ri; = 0. and for the column j there is a vow i'(# 1)
such that Ry > 0. then R is efficient.

By using above theorems and corollary, we can easily
check effciency of R.

At any stage of the extreme ray generation. we cal-
culate sums of column and row vectors of R, 1.e.. Ry. =

Z. R, and Rx = Z/ R., . We obtain the following

theorems as for those sums from Theorem 3 and 6:

Theorem 11 If R.x. < 0. then R is not efficient.
Theorem 12 If Re. > 0. then R is efficient.

5.3 Effective efficiency test

In section 5.1, we propose the efficiency test mehods
based on extreme ray generation method. In this sec-
tion. we propose more effective efficiency test mehod
by useing the characteristics of R obtained in previous
section.

(Efficiency test 3)
1. Calculate R for a feasible basis r.

2. (a) If there are columns such that R, 2 0, then

elininate such coumns (Theorem 7).

If there are rows such that R,. £ 0, then elin-
inate such rows (Theorem 8).

If there is a column such that R.; < 0. then
IR is not efficient (Theorem 9).

If there is a row such that R;. > 0, then R 1s
cfficient (Theorem 10).
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(c) If there is a row such taht R;. > 0 and a row
that is R;;; > 0 for j(R;; = 0), then R is
efficient (Corollary 2).

4. Calculate R.v and Rs. .
3. (a) If Ry <0, then R is not efficient (Theorem

11).
(b) If Rc. > 0. then R is efficient (Theorem 12).
6. Let D = —R and process the rows by using “Ex-

treme ray generation method”. At the same time
with this, let D = RT and process the rows in par-
allel by using “Extreme ray generation method”.

-1

Go to step 2.

In case of higher dimensional problem, a matrix R
becomes very large. Concerning the efficiency test based
on Corollary 1. we must rewrite the large scale simplex
tableau in each step of the procedure.

On the other hand, our new method proposed is an
improved method of “Efficiency test 1 and 27, there-
fore in each process we shrink the matrix R and check
efficiency by simple methods.

The maximum number of processes of our method is
n-m times as for column process and p times as for row
process, however, in actual execution, we can use matrix
shrinking processes, simple efficiency tests and parallel
execution, the number of processes is far shorter than
the munber.

In this way our mehod is very effective efficiency test
mehtod.

6. A numerical example

Let us consider the following three objective problem
in reference [10]:

1 2 -1 3 2 0 1 0000
c=(0 1 1 2 3 1 0000 |,
10 1 -1 0 -1 -1 0000
1 2 1 1 2 1 2 1000
i 210 12 0 10100
i S 1 0 2 0 -2 0010 |-
0 1 2 -1 1 -2 -1 0001

16
16
b=1 16
16

We consider the following two feasible bases.
¢ (0.0.32.2.0.0.0.0.3.22.0)

The matrix R for this basis is processed as shown in
Table 1. Namely, at first, we eliminate second and third
column of the initial matrix R, and process the first row.
After climinating some columuns, we process the second
Finally. we find the R is efficient by (3.(b)) of
“Efficiency test 37 (the third row of the bottom matrix).

On Table 1, we saw efficiency test by row process in
Meanwhile, in
case of column process of R, sequence of the column

TOW.

succession to first column elimination.

processes is shown in Table 2. Namely, we process the
first column, and obtain the final matrix. we can find
R is efficent by (3.(c)) of “Efficiency test 3" (the fourth
row of the final matrix). In this case, we can check
efficiency by only one column process.

On the other hand., in reference [10] for efficiency test
oun this feasible basis, we have to pivot two times in
simplex algorithm, i.e., we must rewrite the large 4 x 10
simplex tableau twice.

(Initial matrix: R = CgB !N —Cx)

1 : z
H JEINND O 2 A
O S S
R A S T N
3 0 0 -§ -3 -3 § |-
E/9+ 4+ 0 + + + -
(Column elimination) {}
b
- = D1 3 S
I S U
3 3 3 "3 3
S|+ + + + -
(Process on the first row) |}
| T
% 0 0 0 0 ]-
h 113 %+
3 ' ¢
o A i i A
A - + + + +
(Column elimination) {}
b
i 0| —
el el
2 %
3 U
b - +

(Process on the second row) §

w
)
[ S 1 A
.} 3
-3 0 -
2 12
3 3 +
- — -

Table 1: Efficiency test (row process)

©(0,0,12,0,0,4,0,0,16,4,0) :

The sequence of the processes on the matrix R is
shown in Table 3. Namely, we eliminate the first row,
and some columns. Finally we obtain a final matrix. By
(5.(a)) of “Efficiency test 3” (the sum of columns), we
find the matrix R is not efficient.

In reference [10], we must solve a linear programming
problem for effciency test. On the other hand, by our
method we need not process any row and column, only
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) T
3) 3 F 3 % +
() 3 0 2 3|+
[ U T B B A R
3 3 3 Ry :
ST+ + + + -

(Process on the first column) |

M)

T 3 T
T = - 3 iy +
U R

3 3 3 ] ;
0o & 4 1 iy
A

3 303 1

T+ + + + -

Table 2: Efficiency test (column process)

by eliminating the useless columns and rows, we can
easily check efficiency.

( Initial matrix: R = CgB !N —~Cn )

T
R T A : SRR & S & S A D O B
] 1 1 1 3 1 1
1 1 -1 -1 2 1 0|+
-1 L 1 1 1 0 LA
|- - - - - -0
(Row elimination) {}
1 1 1 11 E
11 -1 -1 2 1 0]+
R S S S 2 O -
by + - ~- + + +

(Column elimination)

hY
1 110
a1 L -
Slo0o -

Table 3: Efficiency test

7. Conclusion

In this paper, we considered possibilistic multiobjec-
tive lienar programming problems. and proposed effec-
tive possible and necessary efficiency test mehods hased
on extreme ray generation mathod.

We can apply our proposed method into possibly
and necessarily efficient solution generation mehods dis-
cussed in [3]. and will be able to develop effective mehod
for efficient solution generation of possibilistic multiob-
jective lienar programming problems. Moreover, appli-
cations to the actual problems such as multiobjective
optimal control problems under uncertainty [0] are ex-
pected.
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