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PROPERTIES OF ELASTIC SYMBOLS AND
CONSTRUCTION OF SOLUTIONS OF
THE DIRICHLET PROBLEM

MisHio KAWASHITA* AND HIDEO Soga**

ABSTRACT. We examine plane waves of the elastic reduced wave
equation in the half-space, and show that linear combinations of
them can cover all plane waves on the boundary. The proof is
based on the complex analysis for the symbol in the {dual) variable
in the normal direction to the boundary.

1. Introduction

In this note we consider the following elastic (reduced wave) equation
(1.1) in the half-space R} = {z = (¢/,z,) : , > 0} with the Dirichlet
boundary condition, and study the plane waves of this equation:

L
(1.1) (@ I+ Y aij0s,0s)ulx) =0 in  RL.
§j=1
Plane waves play an important role on various problems, e.g., inverse
problems analyzed by means of the Fourier analysis, etc.

We assume that the coefficients a;; (4,7 = 1,--- ,n) are constant real
nxn-matrices satisfying
(Al) a,g-j = ta,j,-, i,j =1,2,--- , 10,
T
(A.2) L&) = Z a;;&€; is positive definite for any £ # 0.
i,j=1
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Then all the eigen-values of L{£)} become positive. We assume that

every eigen-value of L(£)is of constant multiplicity

(A-3) for all £ # 0,

and denote the eigen-values by X;(€) (F=1,--- ,d; 0 < Xy <+ < Ag)-
We set the following assumption on the eigen-values {A;}:

A4 every slowness surface ; = {£: A;(£) = 1} is strictly
(A4) convex, and its Gaussian curvature does not vanish.

We say that 7' is non-glancing if for every eigen-value A;
B¢, Mi{n', z) # 0 whenever real z satisfies A;(n',2) = 1.
In the whole space R?, the plane waves are of the form
€y, where \j(n) =land v € Ker [I — L(n)]

for some eigen-value A;. In the half-space, we need to add other waves to
ey so that those sum satisfies the boundary condition. Our purpose
is to examine those added waves. Namely we construct the bounded
solutions satisfying the equation (1.1) and

(1.2) Uy —0 ="y on R

where v is any given vector in C". Taking a root Z of the equation (in
z)

(1.3) det (I — L(n',2)) =0

and a vector ¥ belonging to Ker(I — L{#', Z)), we can make a solution
of the form €77 % ¢9%¥n 5 but it is not guaranteed that this solution can
satisfies (1.2) (i.e. ¥ = v).

Obviously, the non-real roots of (1.3) are complex conjugate each
other. The roots {z%.(7')};=1,.. # of (1.3) are classified in the following
way if 7/ is non-glancing:

(i) 25.(n') (j =1, - ,k) are real and satisfy £, \;(7/, ZL(7)) > 0,
(ii) Z.(7) (j = k+1,--- ,d’) are non-real and satisfy £Im 2% (r') > 0.

Furthermore, the multiplicities of the real roots zi (j=1,---,k) coin-
cide with those of the eigen-values A;(r7, 24 (7)) (cf. Lemma 2.1 in Soga

[2])-
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One of our main assertions is that under some assumption on the
non-real roots 24 () (j = k + 1,--- ,d’), linear combinations of the
solutions

E_?_ _ {eianleeiazi(nl)xnuj .o € Ker [I _ L(??',Zi(ﬂ'))], j=1,--. ,df}

can cover the boundary data €7 %'y for any v € C" (cf. Theorem 2.1).
In general systems, this is not necessarily obtained, and is set as an
assumption.

As another main assertion, even if the assumption on the non-real
roots is not satisfied, adding the solutions represented of the same form
as for the Poisson operators, we can make linear combinations of the
solutions in the extended class cover the boundary data (cf. Theorem
2.4).

In Soga [2] we have already obtained the first assertion in more gen-
eral situations. In this note, however, we give a new idea of the proof due
to a suggestion by Professor J. Ralston, which is a modified method of
Kostyuchenko and Shakalikov [1] for operator pencils. We only explain
the main results together with outlines of the proof. And in a forthcom-
ing paper, we will describe the precise proofs, and moreover intend to
improve the present results.

2. Main results

As is easily seen, the first assertion stated in §1 follows from

THEOREM 2.1. Let %' be non-glancing, and assume that
(2.1) dim Ker [I - L1y, 2, (1/))] = wultiplicity of 2%(7')

for the non-real roots 2. (n') (j =k +1,-- ,d"). Then we have

dl
3" Ker [T — Ly, 24 (/)] = €™
j=1

In the isotropic case the condition (2.1) is satisfied, but in general
cases it is not necessarily satisfied. Let us note

REMARK 2.2. Let 1/ be non-glancing. Then, for any root Z of (1.3)
we have
dim Ker [I — L{r/, £)] < multiplicity of .
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For proof of this remark, see Remark 2.4 in Soga [2]. The proof of
Theorem 2.1 is based on

PROPOSITION 2.3. Let the assumptions in Theorem 2.1 be satisfied.
Then the function (I — L{n/,z))~* has only the simple pole at every of

the roots {z4 () }j=1, &

For proof of this proposition, see the proof of Lemma 2.3 in Soga
[2]. When (2.1} is not guaranteed, we cannot expect the conclusion of
Theorem 2.1. Let ¢4 be a closed path in C surrounding only the non-real

roots {2 (7)}j=k+1,. &> and put

(2.2) Qu(anin) = =

wz:r;n _ ! ~1
211_@ (I L(n ,Z)) dz'

Then, for any v € C" the functlon ew”’“"'Q+(mn; 7' )v becomes a bounded

solution of (1.1). We employ the class

E-1§- = { iony @' 1az+(n )xnv:" ’U"J € Ker [I L(U z+(n ))] L 7k}
UL Quami o s v TP,

Linear combinations of the solutions in E} can cover any boundary data.
Namely we obtain

THEOREM 2.4. Let ' be non-glancing.  Then we have

k
S Ker [I - L, 24(n)] + Q4(037/)C" = C”

i=1

The solution €**7% Q. (z,: 7' v is represented by sum of the solutions
in Eff_ if the roots surrounded by c are all simple. Namely, we have

PROPOSITION 2.5. Let Z be a root of (1.3) and let ¢ be a small path
surrounding 3. If % is the simple pole of (I — L(n/, z))~1, we have

(i) Ker [I — L(®, z]—/I Ly, 2z)) 1dzC",

1 ‘ .
(ii) é_ﬁ_%_ /ewzxn (I _ L("? ,z))_le‘U — e T Reg z:E(I — L(nf’ z))“lfu.

For the proof, see Lemma 2.5 in Soga [2].
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3. Outline of the proofs

Let (v,w) = ", v;W;, and for v € C" put
(3.1) Fy(2) = {(I - L, 2)) "0, ).
Then F,(z) becomes a meromorphic function and may have poles at
{24 (), 00}j=1,.. & at most. We obtain

LEMMA 3.1. LetT € {zi(n’)}jzl,... & and assume that (I-L(r/, 2)) 7!
has a simple pole at T or is analytic at 7. Then, if v is orthogonal to
Ker[I — L(#/,7)], F,(2) becomes analytic at 7.

If the root 7 of (1.3) is real, we can know a precise form of (I —
L(n',z))~! for real z near 7:

LeEMMA 3.2. Let ' be non-glancing, and let the real root T of (1.3)
satisfy A(n',7) = 1. Then we have a C*™ function a(z) defined for real
z near T such that

d
(I-L(y,z)™" = j;-#l T—ij(n',z) + %H(n’,z),
a(r) = —{de N, )}

where P;(€', z) is the projection to the eigen-space of A\;(¢, 2).

In order to prove Theorem 2.1, assuming that v € C" is orthogonal to
Z?:l Ker [T — L(n', 2.(1'))], we have only to show that » must be equal
to 0. We insert the v into F3(z) in (3.1). Using Lemma 3.1 and the equal-
ity Fu(2) = Fu(2), we see that {2 (7)};=1,...e and {27 (7)}jmpr1, o
are not the poles, and also that oo is not the pole, which follows from
32  {I-LM0,2)' ~ —z%an, a2z o .

Let ¢ be a small circle surrounding only 27 (7). Then, (3.2) yields
that

lim (2mi)~! f' =)

r—++00
k
= > IR TR

Jj=
=0
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Therefore, by Proposition 2.3 and Lemma 3.2, we obtain

k
(3.3) > BN NP, 2 ()w,v) = 0.

j=1
From the non-glancingness of 7' we see that (P;(n 2 (n"Yv,v) = 0
for every j = 1,--- ,k, and therefore, by (3.2) we have z%F,(z) =
—({a,tv,v) = 0, which proves that v = 0. Thus Theorem 2.1 is proved.

Assume that v € C" is orthogonal to the subspace Z;-;l Ker [I —
L, 2% (0'))] +Q+(0;7/)C", and insert this v into Fy(2) in (3.1). In the
same way as for Theorem 2.1, we see that F,(z) is analytic at the real
roots zj_(n’) (1=1,---,k).

Let ¢4 (¢_) be a closed path in C surrounding only the non-real roots
{22 () s2ki1 @ ({22 ()} j=k+1, @). Then, in the same way as for
(3.3), we obtain

k
0= de (0, 2L ()T (B0, 2L (7))o, v) + (Qrw,0) + (Q-v, ),

i=1
where Q1 = (2mi)7! fCi(I — L(n',2))"'dz. From the above equality,

using @_ = Q4 , we have v = 0 in the same way as for Theorem 2.1.
Thus Theorem 2.4 is obtained.
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