• Title/Summary/Keyword: driver

Search Result 4,626, Processing Time 0.028 seconds

Silicon-based 0.69-inch AMOEL Microdisplay with Integrated Driver Circuits

  • Na, Young-Sun;Kwon, Oh-Kyong
    • Journal of Information Display
    • /
    • v.3 no.3
    • /
    • pp.35-43
    • /
    • 2002
  • Silicon-based 0.69-inch AMOEL microdisplay with integrated driver and timing controller circuits for microdisplay applications has been developed using 0.35 ${\mu}m$ l-poly 4-metal standard CMOS process with 5 V CMOS devices and CMP (Chemical Mechanical Polishing) technology. To reduce the large data programming time consumed in a conventional current programming pixel circuit technique and to achieve uniform display, de-amplifying current mirror pixel circuit and the current-mode data driver circuit with threshold roltage compensation are proposed. The proposed current-mode data driver circuit is inherently immune to the ground-bouncing effect. The Monte-Carlo simulation results show that the proposed current-mode data driver circuit has channel-to-channel non-uniformity of less than ${\pm}$0.6 LSB under ${\pm}$70 mV threshold voltage variaions for both NMOS and PMOS transistors, which gives very good display uniformity.

Precision Screw Driver utilizing a Bellows (벨로우즈방식의 정 밀 나사 체결기)

  • 정규원;오의진
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.10 no.5
    • /
    • pp.53-59
    • /
    • 2001
  • A screw driver is widely used in assembling machine parts or electronic products such as the printed circuit board with a housing. As the parts to be assembled becomes small and precise, the higher precision of the controlling screw driver torque is required. However, because the operator controls the fastening torque based on experience, it must be inexact and the setting procedure will be time consuming job. Thus the screw driver which can exactly control the fastening torque is developed utilizing a bellows in this paper. The bellows is expanded by the inner air pressure and contracted by the spring operation. The bellows type driver is composed of a clutch mechanism with two solenoid valves and a pressure sensor. Those valves are controlled using the detected bellows pressure by the sensor. When the pressure reaches the setting value, the exit solenoid valve is opened to release the air pressure from the bellows so as not to deliver further torque. Through a series of experiments, the performance is examined and verified.

  • PDF

Design md Implementation of IEEE1394 Device Driver for Dual Kernel OS (이중 커널 구조의 OS를 위한 IEEE1394 디바이스 드라이버의 설계 및 구현)

  • Jung Gi-Hoon;Oh Ju-Yong;Kang Soon-Ju
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.32 no.3
    • /
    • pp.107-114
    • /
    • 2005
  • In this paper. we propose an architecture of IEEE1394 device driver for RTLinux. The device driver has two interfaces for applications running on the RTLinux kernel and Linux kernel. With the interfaces, the device driver simultaneously supports RT-Thread of RTLinux kernel and user level process of Linux kernel. This architecture could be a reference for designing other device driver on the dual kernel platform.

Analysis of Old Driver's Accident Influencing Factors Considering Human Factors (인적특성을 고려한 고령 운전자 교통사고 영향요인 분석)

  • Kim, Tae-Ho;Kim, Eun-Kyung;Rho, Jeong-Hyun
    • Journal of the Korean Society of Safety
    • /
    • v.24 no.1
    • /
    • pp.69-77
    • /
    • 2009
  • This paper reports the aging driver traffic accident severity modeling results. For the modeling, Poisson regression approach is applied using the data set obtained from the Korea Transportation Safety Authority's simulator-based driver aptitude test results. The test items include the estimations of moving objects' speed and stopping distance, drivers' multi-task capability, and kinetic depth perception and so on. The resulting model with the response variable of equivalent property damage only(EPDO) indicated that EPDO is significantly influenced by moving objects' speed estimation and drivers' multi-task capabilities. More interestingly, a comparison with the younger driver model revealed that the degradation of such capabilities may result in severer crashes for older drivers as suggested by the higher estimated parameters for the older driver model.

A Study on the Synchronous Rectifier Driver Circuits in the LLC Resonant Half-Bridge Converter (LLC 공진형 하프브릿지 컨버터의 동기정류기 구동회로에 관한 연구)

  • Ahn, Tae-Young;Im, Bum-Sun
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.30 no.1
    • /
    • pp.79-86
    • /
    • 2016
  • In this paper, we propose a current-driven synchronous rectifier driver circuit for LLC resonant half-bridge converters. The proposed driver circuit detects a relatively low current in the primary side of the transformer although a large current is flowing in the secondary side. Due to this feature, the driver circuit has a simple circuit structure and stabilizes the switching operation with a logic-level switching voltages for the synchronous rectifier. The operation and performance of the proposed driver circuit are confirmed with a prototype of 1kW class LLC resonant half-bridge converter. The experimental results proved that the proposed synchronous rectifier driver method improves the power conversion efficiency by around 1% and reduces the internal power loss by 17W.

A Study on the 2.5kW Laser Diode Driver (2.5kW급 레이져 다이오드 구동 드라이버 개발)

  • Ahn, Joonseon;Park, Dong-Hyun;Han, Yu-il;Han, Kyeong-Suk
    • Proceedings of the KIPE Conference
    • /
    • 2014.07a
    • /
    • pp.59-60
    • /
    • 2014
  • In this paper, development of laser diode driver with 2.5kW rating is presented. The driver is configured with interleaved PFC converter, high frequency full bridge DC-DC converter, two laser diode drivers and ${\mu}$-processor based controller. The system has two laser diode drivers for providing high current and low current. High current driver delivers normal output power of diode; low current driver is for providing critical current of diode for long lifetime. Computer simulation and experiment was performed for verification, as the results, developed driver performs well.

  • PDF

The Study on the Gate driver circuit for improved switching characteristics (스위칭 특성 향상을 위한 게이트 구동회로에 관한 연구)

  • Bae, Jin-Yong;Kim, Yong;Baek, Soo-Hyun;Yoon, Shin-Yong;Lee, Kyu-Hoon
    • Proceedings of the KIEE Conference
    • /
    • 2005.07b
    • /
    • pp.1355-1357
    • /
    • 2005
  • This paper discusses Gate-driver circuit for improved switching characteristics. This resonant gate-driver recycles the energy stored in the gate capacitance to reduce the turn-off switching loss associated with a conventional gate-driver. Reducing the loss reduces the power consumption and hence the subsequent power dissipation in the resonant gate-driver. The design considerations of implementing a practical MOSFET gate-driver using this topology are discussed.

  • PDF

Study on Riding Quality Improvement of a Forklift Truck through Structural Vibration Analysis (지게차 구조진동 특성분석을 통한 운전자승차감 개선기법 연구)

  • Ra, Duck-Joo;Kim, Jae-Hwan;Choi, Suck-Bae;Kim, Nag-In
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.542-545
    • /
    • 2004
  • The vibration reduction process for the driver comfort of a forklift truck is studied in this study since the related driver comfort is a primary design target in the vehicle design recently. However, the underlying study for a vibration analysis regarding to the driver comfort is still an element stage. Thus, a preceding large work has to be needed to apply the CAE technology for the detail vehicle design, and it prevents the vehicle optimal design. To reduce the proceeding large works, the evaluated process and required data are comply with the accumulated trouble shooting experiences in this study. Since the driver comfort is a human related problem, the human vibration index associated with analysis vibration result is additionally introduced as a driver comfort judgement value.

  • PDF

Ultra-High Resolution and Large Size Organic Light Emitting Diode Panels with Highly Reliable Gate Driver Circuits

  • Hong Jae Shin
    • International journal of advanced smart convergence
    • /
    • v.12 no.4
    • /
    • pp.1-7
    • /
    • 2023
  • Large-size, organic light-emitting device (OLED) panels based on highly reliable gate driver circuits integrated using InGaZnO thin film transistors (TFTs) were developed to achieve ultra-high resolution TVs. These large-size OLED panels were driven by using a novel gate driver circuit not only for displaying images but also for sensing TFT characteristics for external compensation. Regardless of the negative threshold voltage of the TFTs, the proposed gate driver circuit in OLED panels functioned precisely, resulting from a decrease in the leakage current. The falling time of the circuit is approximately 0.9 ㎲, which is fast enough to drive 8K resolution OLED displays at 120 Hz. 120 Hz is most commonly used as the operating voltage because images consisting of 120 frames per second can be quickly shown on the display panel without any image sticking. The reliability tests showed that the lifetime of the proposed integrated gate driver is at least 100,000 h.

Design of Digital Block for LF Antenna Driver (LF 안테나 구동기의 디지털 블록 설계)

  • Sonh, Seung-Il
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.15 no.9
    • /
    • pp.1985-1992
    • /
    • 2011
  • PE(Passive Entry) is an automotive technology which allows a driver to lock and unlock door of vehicle without using smart key buttons personally. PG(Pssive Go) is an automotive technology which offers the ability to start and stop the engine when there is a driver in vehicle with smart key. When these two functions are unified, we call it PEG(Passive Entry/Go). LF(Low Frequency) antenna driver which is one of core technologies in PEG is composed of a digital part which processes commands and an analog part which generates sine waveform. The digital part of antenna driver receives commands from MCU(or ECU), and processes requested commands by MCU, and stores antenna-related driver commands and data on an internal FIFO block. The digital part takes corresponding actions for commands read from FIFO and then transfers modulated LF data to analog part. The analog part generates sine waveform and transmits outside through antenna. The designed digital part for LF antenna driver can acomplish faster LF data transmission than that of conventional product. LF antenna driver can be applicable to the areas such as PEG for automotive and gate opening and closing of building.