• Title/Summary/Keyword: double-strand DNA repair

Search Result 51, Processing Time 0.023 seconds

Development of CRISPR technology for precise single-base genome editing: a brief review

  • Lee, Hyomin K.;Oh, Yeounsun;Hong, Juyoung;Lee, Seung Hwan;Hur, Junho K.
    • BMB Reports
    • /
    • v.54 no.2
    • /
    • pp.98-105
    • /
    • 2021
  • The clustered regularly interspaced short palindromic repeats (CRISPR) system is a family of DNA sequences originally discovered as a type of acquired immunity in prokaryotes such as bacteria and archaea. In many CRISPR systems, the functional ribonucleoproteins (RNPs) are composed of CRISPR protein and guide RNAs. They selectively bind and cleave specific target DNAs or RNAs, based on sequences complementary to the guide RNA. The specific targeted cleavage of the nucleic acids by CRISPR has been broadly utilized in genome editing methods. In the process of genome editing of eukaryotic cells, CRISPR-mediated DNA double-strand breaks (DSB) at specific genomic loci activate the endogenous DNA repair systems and induce mutations at the target sites with high efficiencies. Two of the major endogenous DNA repair machineries are non-homologous end joining (NHEJ) and homology-directed repair (HDR). In case of DSB, the two repair pathways operate in competition, resulting in several possible outcomes including deletions, insertions, and substitutions. Due to the inherent stochasticity of DSB-based genome editing methods, it was difficult to achieve defined single-base changes without unanticipated random mutation patterns. In order to overcome the heterogeneity in DSB-mediated genome editing, novel methods have been developed to incorporate precise single-base level changes without inducing DSB. The approaches utilized catalytically compromised CRISPR in conjunction with base-modifying enzymes and DNA polymerases, to accomplish highly efficient and precise genome editing of single and multiple bases. In this review, we introduce some of the advances in single-base level CRISPR genome editing methods and their applications.

Elevated expression of exogenous RAD51 enhances the CRISPR/Cas9-mediated genome editing efficiency

  • Seo Jung Park;Seobin Yoon;Eui-Hwan Choi;Hana Hyeon;Kangseok Lee;Keun Pil Kim
    • BMB Reports
    • /
    • v.56 no.2
    • /
    • pp.102-107
    • /
    • 2023
  • Genome editing using CRISPR-associated technology is widely used to modify the genomes rapidly and efficiently on specific DNA double-strand breaks (DSBs) induced by Cas9 endonuclease. However, despite swift advance in Cas9 engineering, structural basis of Cas9-recognition and cleavage complex remains unclear. Proper assembly of this complex correlates to effective Cas9 activity, leading to high efficacy of genome editing events. Here, we develop a CRISPR/Cas9-RAD51 plasmid constitutively expressing RAD51, which can bind to single-stranded DNA for DSB repair. We show that the efficiency of CRISPR-mediated genome editing can be significantly improved by expressing RAD51, responsible for DSB repair via homologous recombination (HR), in both gene knock-out and knock-in processes. In cells with CRISPR/Cas9-RAD51 plasmid, expression of the target genes (cohesin SMC3 and GAPDH) was reduced by more than 1.9-fold compared to the CRISPR/Cas9 plasmid for knock-out of genes. Furthermore, CRISPR/Cas9-RAD51 enhanced the knock-in efficiency of DsRed donor DNA. Thus, the CRISPR/Cas9-RAD51 system is useful for applications requiring precise and efficient genome edits not accessible to HR-deficient cell genome editing and for developing CRISPR/Cas9-mediated knockout technology.

Ku complex suppresses recombination in the absence of MRX activity during budding yeast meiosis

  • Yun, Hyeseon;Kim, Keunpil
    • BMB Reports
    • /
    • v.52 no.10
    • /
    • pp.607-612
    • /
    • 2019
  • During meiosis, programmed double-strand breaks (DSBs) are repaired via recombination pathways that are required for faithful chromosomal segregation and genetic diversity. In meiotic progression, the non-homologous end joining (NHEJ) pathway is suppressed and instead meiotic recombination initiated by nucleolytic resection of DSB ends is the major pathway employed. This requires diverse recombinase proteins and regulatory factors involved in the formation of crossovers (COs) and non-crossovers (NCOs). In mitosis, spontaneous DSBs occurring at the G1 phase are predominantly repaired via NHEJ, mediating the joining of DNA ends. The Ku complex binds to these DSB ends, inhibiting additional DSB resection and mediating end joining with Dnl4, Lif1, and Nej1, which join the Ku complex and DSB ends. Here, we report the role of the Ku complex in DSB repair using a physical analysis of recombination in Saccharomyces cerevisiae during meiosis. We found that the Ku complex is not essential for meiotic progression, DSB formation, joint molecule formation, or CO/NCO formation during normal meiosis. Surprisingly, in the absence of the Ku complex and functional Mre11-Rad50-Xrs2 (MRX) complex, a large portion of meiotic DSBs was repaired via the recombination pathway to form COs and NCOs. Our data suggested that Ku complex prevents meiotic recombination in the elimination of MRX activity.

DNA-dependent Protein Kinase Mediates V(D)J Recombination via RAG2 Phosphorylation

  • Hah, Young-Sool;Lee, Jung-Hwa;Kim, Deok-Ryong
    • BMB Reports
    • /
    • v.40 no.3
    • /
    • pp.432-438
    • /
    • 2007
  • V(D)J recombination, a site-specific gene rearrangement process occurring during the lymphocyte development, begins with DNA double strand breaks by two recombination activating gene products (RAG1/2) and finishes with the repair process by several proteins including DNA-dependent protein kinase (DNA-PK). In this report, we found that RAG2 was specifically phosphorylated by DNA-PK at the $365^{th}$ serine residue, and this phosphorylated RAG2 affected the V(D)J recombination activity in cells in the GFP expression-based assay. While the V(D)J recombination activity between wild-type RAG2 and mutant S365A RAG2 in the assay using a signal joint substrate was undistinguishable in DNA-PK deficient cells (M059J), the activity with wild-type RAG2 was largely increased in DNA-PK proficient cells (M059K) in comparison with mutant RAG2, suggesting that RAG2 phosphorylation by DNA-PK plays a crucial role in the signal joint formation during V(D)J recombination.

Knocking Down Nucleolin Expression Enhances the Radiosensitivity of Non-Small Cell Lung Cancer by Influencing DNA-PKcs Activity

  • Xu, Jian-Yu;Lu, Shan;Xu, Xiang-Ying;Hu, Song-Liu;Li, Bin;Qi, Rui-Xue;Chen, Lin;Chang, Joe Y.
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.8
    • /
    • pp.3301-3306
    • /
    • 2015
  • Nucleolin (C23) is an important anti-apoptotic protein that is ubiquitously expressed in exponentially growing eukaryotic cells. In order to understand the impact of C23 in radiation therapy, we attempted to investigate the relationship of C23 expression with the radiosensitivity of human non-small cell lung cancer (NSCLC) cells. We investigated the role of C23 in activating the catalytic subunit of DNA-dependent protein kinase (DNA-PKcs), which is a critical protein for DNA double-strand breaks (DSBs) repair. As a result, we found that the expression of C23 was negatively correlated with the radiosensitivity of NSCLC cell lines. In vitro clonogenic survival assays revealed that C23 knockdown increased the radiosensitivity of a human lung adenocarcinoma cell line, potentially through the promotion of radiation-induced apoptosis and adjusting the cell cycle to a more radiosensitive stage. Immunofluorescence data revealed an increasing quantity of ${gamma}$-H2AX foci and decreasing radiation-induced DNA damage repair following knockdown of C23. To further clarify the mechanism of C23 in DNA DSBs repair, we detected the expression of DNA-PKcs and C23 proteins in NSCLC cell lines. C23 might participate in DNA DSBs repair for the reason that the expression of DNA-PKcs decreased at 30, 60, 120 and 360 minutes after irradiation in C23 knockdown cells. Especially, the activity of DNA-PKcs phosphorylation sites at the S2056 and T2609 was significantly suppressed. Therefore we concluded that C23 knockdown can inhibit DNA-PKcs phosphorylation activity at the S2056 and T2609 sites, thus reducing the radiation damage repair and increasing the radiosensitivity of NSCLC cells. Taken together, the inhibition of C23 expression was shown to increase the radiosensitivity of NSCLC cells, as implied by the relevance to the notably decreased DNA-PKcs phosphorylation activity at the S2056 and T2609 clusters. Further research on targeted C23 treatment may promote effectiveness of radiotherapy and provide new targets for NSCLC patients.

Hed1 Promotes Meiotic Crossover Formation in Saccharomyces cerevisiae

  • Kong, Yoon-Ju;Joo, Jeong-Hwan;Kim, Keun Pil;Hong, Soogil
    • Journal of Microbiology and Biotechnology
    • /
    • v.27 no.2
    • /
    • pp.405-411
    • /
    • 2017
  • Homologous recombination occurs between homologous chromosomes and is significantly involved in programmed double-strand break (DSB) repair. Activation of two recombinases, Rad51 and Dmc1, is essential for an interhomolog bias during meiosis. Rad51 participates in both mitotic and meiotic recombination, and its strand exchange activity is regulated by an inhibitory factor during meiosis. Thus, activities of Rad51 and Dmc1 are coordinated to promote homolog bias. It has been reported that Hed1, a meiosis-specific protein in budding yeast, regulates Rad51-dependent recombination activity. Here, we investigated the role of Hed1 in meiotic recombination by ectopic expression of the protein after pre-meiotic replication in Saccharomyces cerevisiae. DNA physical analysis revealed that the overexpression of Hed1 delays the DSB-to-joint molecule (JM) transition and promotes interhomolog JM formation. The study indicates a possible role of Hed1 in controlling the strand exchange activity of Rad51 and, eventually, meiotic crossover formation.

Enhanced Sensitivity and Long-Term G2/M Arrest in Adriamycin-treated DNA-PK-null Cells are Unrelated to DNA Repair Defects (DNA-PK-null 세포주의 adriamycin 처리에 의한 G2/M 세포주기 변화)

  • Kim, Chung-Hee;Kim, Jong-Soo;Van Cuong, Dang;Kim, Na-Ri;Kim, Eui-Yong;Han, Jin
    • Journal of Life Science
    • /
    • v.13 no.3
    • /
    • pp.241-247
    • /
    • 2003
  • While the DNA-protein kinase (DNA-PK) complex, comprised of DNA-PKcs and Ku80, is primary involved in the repair of DNA double-strand breaks, it is also believed to participate in additional cellular processes. Here, treatment of embryo fibroblasts (MEFs) derived from either wild-type (Wt) or DNA-PKcs-null (DNA-$PKcs^{-/-}$) mice with various stress inducing agents revealed that adriamycin was markedly more cytotoxic for $Ku80^{-/-}MEFs$ and led to their long-term accumulation in the $G_2$/M phase. This differential response was not due to differences in DNA repair, since adrimycin-triggered DNA damage was repaired with comparable efficiency in both Wt and $Ku80^{-/-}MEFs$, but was associated with differences in the expression of important cell cycle regulatory genes. Our results support the notion that Ku80-mediated cytoprotection and $G_2$/M-progression are not only dependent on the cell's DNA repair but also may reflect Ku80's influence on additional cellular processes such as gene expression.

HeLa Cells Containing a Truncated Form of DNA Polymerase Beta are More Sensitized to Alkylating Agents than to Agents Inducing Oxidative Stress

  • Khanra, Kalyani;Chakraborty, Anindita;Bhattacharyya, Nandan
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.18
    • /
    • pp.8177-8186
    • /
    • 2016
  • The present study was aimed at determining the effects of alkylating and oxidative stress inducing agents on a newly identified variant of DNA polymerase beta ($pol{\beta}{\Delta}_{208-304}$) specific for ovarian cancer. $Pol{\beta}{\Delta}_{208-304}$ has a deletion of exons 11-13 which lie in the catalytic part of enzyme. We compared the effect of these chemicals on HeLa cells and HeLa cells stably transfected with this variant cloned into in pcDNAI/neo vector by MTT, colony forming and apoptosis assays. $Pol{\beta}{\Delta}_{208-304}$ cells exhibited greater sensitivity to an alkylating agent and less sensitivity towards $H_2O_2$ and UV when compared with HeLa cells alone. It has been shown that cell death in $Pol{\beta}{\Delta}_{208-304}$ transfected HeLa cells is mediated by the caspase 9 cascade. Exon 11 has nucleotidyl selection activity, while exons 12 and 13 have dNTP selection activity. Hence deletion of this part may affect polymerizing activity although single strand binding and double strand binding activity may remain same. The lack of this part may adversely affect catalytic activity of DNA polymerase beta so that the variant may act as a dominant negative mutant. This would represent clinical significance if translated into a clinical setting because resistance to radiation or chemotherapy during the relapse of the disease could be potentially overcome by this approach.

Downregulation of FoxM1 sensitizes nasopharyngeal carcinoma cells to cisplatin via inhibition of MRN-ATM-mediated DNA repair

  • Li, Dandan;Ye, Lin;Lei, Yue;Wan, Jie;Chen, Hongyan
    • BMB Reports
    • /
    • v.52 no.3
    • /
    • pp.208-213
    • /
    • 2019
  • Chemoresistance is the primary obstacle in the treatment of locally advanced and metastatic nasopharyngeal carcinoma (NPC). Recent evidence suggests that the transcription factor forkhead box M1 (FoxM1) is involved in chemoresistance. Our group previously confirmed that FoxM1 is overexpressed in NPC. In this study, we investigated the role of FoxM1 in cisplatin resistance of the cell lines 5-8F and HONE-1 and explored its possible mechanism. Our results showed that FoxM1 and NBS1 were both overexpressed in NPC tissues based on data from the GSE cohort (GSE12452). Then, we measured FoxM1 levels in NPC cells and found FoxM1 was overexpressed in NPC cell lines and could be stimulated by cisplatin. MTT and clonogenic assays, flow cytometry, ${\gamma}H2AX$ immunofluorescence, qRT-PCR, and western blotting revealed that downregulation of FoxM1 sensitized NPC cells to cisplatin and reduced the repair of cisplatin-induced DNA double-strand breaks via inhibition of the MRN (MRE11-RAD50-NBS1)-ATM axis, which might be related to the ability of FoxM1 to regulate NBS1. Subsequently, we demonstrated that enhanced sensitivity of FoxM1 knockdown cells could be reduced by overexpression of NBS1. Taken together, our data demonstrate that downregulation of FoxM1 could improve the sensitivity of NPC cells to cisplatin through inhibition of MRN-ATM-mediated DNA repair, which could be related to FoxM1-dependent regulation of NBS1.

Cadmium chloride down-regulates the expression of Rad51 in HC11 cells and reduces knock-in efficiency

  • Ga-Yeon Kim;Man-Jong Kang
    • Journal of Animal Reproduction and Biotechnology
    • /
    • v.38 no.3
    • /
    • pp.99-108
    • /
    • 2023
  • Background: Efficient gene editing technology is needed for successful knock-in. Homologous recombination (HR) is a major double-strand break repair pathway that can be utilized for accurately inserting foreign genes into the genome. HR occurs during the S/G2 phase, and the DNA mismatch repair (MMR) pathway is inextricably linked to HR to maintain HR fidelity. This study was conducted to investigate the effect of inhibiting MMR-related genes using CdCl2, an MMR-related gene inhibitor, on HR efficiency in HC11 cells. Methods: The mRNA and protein expression levels of MMR-related genes (Msh2, Msh3, Msh6, Mlh1, Pms2), the HR-related gene Rad51, and the NHEJ-related gene DNA Ligase IV were assessed in HC11 cells treated with 10 μM of CdCl2 for 48 hours. In addition, HC11 cells were transfected with a CRISPR/sgRNA expression vector and a knock-in vector targeting Exon3 of the mouse-beta casein locus, and treated with 10 μM cadmium for 48 hours. The knock-in efficiency was monitored through PCR. Results: The treatment of HC11 cells with a high-dose of CdCl2 decreased the mRNA expression of the HR-related gene Rad51 in HC11 cells. In addition, the inhibition of MMR-related genes through CdCl2 treatment did not lead to an increase in knock-in efficiency. Conclusions: The inhibition of MMR-related gene expression through high-dose CdCl2 treatment reduces the expression of the HR-related gene Rad51, which is active during recombination. Therefore, it was determined that CdCl2 is an inappropriate compound for improving HR efficiency.