DOI QR코드

DOI QR Code

DNA-dependent Protein Kinase Mediates V(D)J Recombination via RAG2 Phosphorylation

  • Hah, Young-Sool (Department of Biochemistry and MRCND, School of Medicine and Gyeongsang Institute of Health Sciences, Gyeongsang National University) ;
  • Lee, Jung-Hwa (Department of Biochemistry and MRCND, School of Medicine and Gyeongsang Institute of Health Sciences, Gyeongsang National University) ;
  • Kim, Deok-Ryong (Department of Biochemistry and MRCND, School of Medicine and Gyeongsang Institute of Health Sciences, Gyeongsang National University)
  • Published : 2007.05.31

Abstract

V(D)J recombination, a site-specific gene rearrangement process occurring during the lymphocyte development, begins with DNA double strand breaks by two recombination activating gene products (RAG1/2) and finishes with the repair process by several proteins including DNA-dependent protein kinase (DNA-PK). In this report, we found that RAG2 was specifically phosphorylated by DNA-PK at the $365^{th}$ serine residue, and this phosphorylated RAG2 affected the V(D)J recombination activity in cells in the GFP expression-based assay. While the V(D)J recombination activity between wild-type RAG2 and mutant S365A RAG2 in the assay using a signal joint substrate was undistinguishable in DNA-PK deficient cells (M059J), the activity with wild-type RAG2 was largely increased in DNA-PK proficient cells (M059K) in comparison with mutant RAG2, suggesting that RAG2 phosphorylation by DNA-PK plays a crucial role in the signal joint formation during V(D)J recombination.

Keywords

References

  1. Agrawal, A. and Schatz, D. G. (1997) RAG1 and RAG2 form a stable postcleavage synaptic complex with DNA containing signal ends in V(D)J recombination. Cell 89, 43-53. https://doi.org/10.1016/S0092-8674(00)80181-6
  2. Blunt, T., Finnie, N. J., Taccioli, G. E., Smith, G. C., Demengeot, J., Gottlieb, T. M., Mizuta, R., Varghese, A. J., Alt, F. W., Jeggo, P. A. and Jackson, S. P. (1995) Defective DNAdependent protein kinase activity is linked to V(D)J recombination and DNA repair defects associated with the murine scid mutation. Cell 80, 813-823. https://doi.org/10.1016/0092-8674(95)90360-7
  3. Chan, D. W., Mody, C. H., Ting, N. S. and Lees-Miller, S. P. (1996) Purification and characterization of the double-stranded DNA-activated protein kinase, DNA-PK, from human placenta. Biochem. Cell Biol. 74, 67-73. https://doi.org/10.1139/o96-007
  4. Chan, D. W., Ye, R., Veillette, C. J. and Lees-Miller, S. P. (1999) DNA-dependent protein kinase phosphorylation sites in Ku 70/ 80 heterodimer. Biochemistry 38, 1819-1828. https://doi.org/10.1021/bi982584b
  5. Errami, A., He, D. M., Friedl, A. A., Overkamp, W. J., Morolli, B., Hendrickson, E. A., Eckardt-Schupp, F., Oshimura, M., Lohman, P. H., Jackson, S. P., and Zdzienicka, M. Z. (1998) XR-C1, a new CHO cell mutant which is defective in DNAPKcs, is impaired in both V(D)J coding and signal joint formation. Nucleic Acids Res. 26, 3146-3153. https://doi.org/10.1093/nar/26.13.3146
  6. Fukumura, R., Araki, R., Fujimori, A., Mori, M., Saito, T., Watanabe, F., Sarashi, M., Itsukaichi, H., Eguchi-Kasai, K., Sato, K., Tatsumi, K. and Abe, M. (1998) Murine cell line SX9 bearing a mutation in the dna-pkcs gene exhibits aberrant V(D)J recombination not only in the coding joint but also in the signal joint. J. Biol. Chem. 273, 13058-13064. https://doi.org/10.1074/jbc.273.21.13058
  7. Giffin, W., Torrance, H., Rodda, D. J., Prefontaine, G. G., Pope, L. and Hache, R. J. G.(1996) Sequence-specific DNA binding by Ku autoantigen and its effects on transcription. Nature 380, 265-268. https://doi.org/10.1038/380265a0
  8. Goudelock, D. M., Jiang, K., Pereira, E., Russell, B. and Sanchez, Y. (2003) Regulatory interactions between the checkpoint kinase Chk1 and the proteins of the DNA-dependent protein kinase complex. J. Biol. Chem. 278, 29940-29947. https://doi.org/10.1074/jbc.M301765200
  9. Gu, Y., Jin, S., Gao, Y., Weaver, D. T. and Alt, F. W. (1997) Ku70-deficient embryonic stem cells have increased ionizing radiosensitivity, defective DNA end-binding activity, and inability to support V(D)J recombination. Proc. Natl. Acad. Sci. USA 94, 8076-8081. https://doi.org/10.1073/pnas.94.15.8076
  10. Hiom, K. and Gellert, M. (1998) Assembly of a 12/23 paired signal complex: a critical control point in V(D)J recombination. Mol. Cell 1, 1011-1019. https://doi.org/10.1016/S1097-2765(00)80101-X
  11. Jackson, S. P. and Jeggo, P. A. (1995) DNA double-strand break repair and V(D)J recombination: involvement of DNA-PK. Trends Biochem. Sci. 20, 412-415. https://doi.org/10.1016/S0968-0004(00)89090-8
  12. Kim, D. R. and Oettinger, M. A. (1998) Functional analysis of coordinated cleavage in V(D)J recombination. Mol. Cell. Biol. 18, 4679-4688. https://doi.org/10.1128/MCB.18.8.4679
  13. Kim, D. R., Dai, Y., Mundy, C. L., Yang, W. and Oettinger, M. A. (1999) Mutations of acidic residues in RAG1 define the active site of the V(D)J recombinase. Genes Dev. 13, 3070-3080. https://doi.org/10.1101/gad.13.23.3070
  14. Kim, D. R., Park, S. J. and Oettinger, M. A. (2000) V(D)J recombination: site-specific cleavage and repair. Mol. Cells 10, 367-374.
  15. Kim, D. R. (2003) Recombination activating gene 1 product alone possesses endonucleolytic activity. J. Biochem. Mol. Biol. 36, 201-206. https://doi.org/10.5483/BMBRep.2003.36.2.201
  16. Leber, R., Wise, T. W., Mizuta, R. and Meek, K. (1998) The XRCC4 gene product is a target for and interacts with the DNA-dependent protein kinase. J. Biol. Chem. 273, 1794-1801. https://doi.org/10.1074/jbc.273.3.1794
  17. Lees-Miller, S. P., Sakaguchi, K., Ullrich, S. J., Appella, E. and Anderson, C. W. (1992) Human DNA-activated protein kinase phosphorylates serines 15 and 37 in the amino-terminal transactivation domain of human p53. Mol. Cell. Biol. 12, 5041-5049. https://doi.org/10.1128/MCB.12.11.5041
  18. Li, J. and Stern, D. F. (2005) Regulation of CHK2 by DNAdependent protein kinase. J. Biol. Chem. 280, 12041-12050. https://doi.org/10.1074/jbc.M412445200
  19. Ma, Y., Pannicke, U., Schwarz, K. and Lieber, M. R. (2002) Hairpin opening and overhang processing by an Artemis/DNAdependent protein kinase complex in nonhomologous end joining and V(D)J recombination. Cell 108, 781-794. https://doi.org/10.1016/S0092-8674(02)00671-2
  20. Nussenzweig, A., Chen, C., da Costa Soares, V., Sanchez, M., Sokol, K., Nussenzweig, M. C. and Li, G. C. (1996) Requirement for Ku80 in growth and immunoglobulin V(D)J recombination. Nature 382, 551-555. https://doi.org/10.1038/382551a0
  21. Peterson, S. R., Kurimasa, A., Oshimura, M., Dynan, W. S., Bradbury, E. M. and Chen, D. J. (1995) Loss of the catalytic subunit of the DNA-dependent protein kinase in DNA doublestrand- break-repair mutant mammalian cells. Proc. Natl. Acad. Sci. USA 92, 3171-3174. https://doi.org/10.1073/pnas.92.8.3171
  22. Poltoratsky, V. P., Shi, X., York, J. D., Lieber, M. R. and Carter, T. H. (1995) Human DNA-activated protein kinase (DNA-PK) is homologous to phosphatidylinositol kinases. J. Immunol. 155, 4529-4533.
  23. Rahman, I. (2003) Oxidative stress, chromatin remodeling and gene transcription in inflammation and chronic lung diseases. J. Biochem. Mol. Biol. 36, 95-109. https://doi.org/10.5483/BMBRep.2003.36.1.095

Cited by

  1. Transcriptional activation of DNA-dependent protein kinase catalytic subunit gene expression by oestrogen receptor-α vol.11, pp.3, 2010, https://doi.org/10.1038/embor.2009.279
  2. The Response to and Repair of RAG-Mediated DNA Double-Strand Breaks vol.30, pp.1, 2012, https://doi.org/10.1146/annurev-immunol-030409-101320
  3. Complexes of DNA-dependent protein kinase with single-stranded oligo-(AGGG)6: Identification and possible role in modulation of ribosomal RNA transcription vol.424, pp.1, 2009, https://doi.org/10.1134/S1607672909010013
  4. Unique and redundant functions of ATM and DNA-PKcs during V(D)J recombination vol.10, pp.12, 2011, https://doi.org/10.4161/cc.10.12.16011
  5. The ATM Kinase Restrains Joining of Both VDJ Signal and Coding Ends vol.197, pp.8, 2016, https://doi.org/10.4049/jimmunol.1600597