DOI QR코드

DOI QR Code

Enhanced Sensitivity and Long-Term G2/M Arrest in Adriamycin-treated DNA-PK-null Cells are Unrelated to DNA Repair Defects

DNA-PK-null 세포주의 adriamycin 처리에 의한 G2/M 세포주기 변화

  • Kim, Chung-Hee (College of Veterinary Medicine, Gyeongsang National University (Institute of Animal Medicine)) ;
  • Kim, Jong-Soo (College of Veterinary Medicine, Gyeongsang National University (Institute of Animal Medicine)) ;
  • Van Cuong, Dang (Department of Physiology & Biophysics, College of Medicine, Inje University) ;
  • Kim, Na-Ri (Department of Physiology & Biophysics, College of Medicine, Inje University) ;
  • Kim, Eui-Yong (Department of Physiology & Biophysics, College of Medicine, Inje University) ;
  • Han, Jin (Department of Physiology & Biophysics, College of Medicine, Inje University)
  • 김충희 (경상대학교 수의과대학 (동물의학연구소)) ;
  • 김종수 (경상대학교 수의과대학 (동물의학연구소)) ;
  • ;
  • 김나리 (인제대학교 의과대학 생리학교실) ;
  • 김의용 (인제대학교 의과대학 생리학교실) ;
  • 한진 (인제대학교 의과대학 생리학교실)
  • Published : 2003.06.01

Abstract

While the DNA-protein kinase (DNA-PK) complex, comprised of DNA-PKcs and Ku80, is primary involved in the repair of DNA double-strand breaks, it is also believed to participate in additional cellular processes. Here, treatment of embryo fibroblasts (MEFs) derived from either wild-type (Wt) or DNA-PKcs-null (DNA-$PKcs^{-/-}$) mice with various stress inducing agents revealed that adriamycin was markedly more cytotoxic for $Ku80^{-/-}MEFs$ and led to their long-term accumulation in the $G_2$/M phase. This differential response was not due to differences in DNA repair, since adrimycin-triggered DNA damage was repaired with comparable efficiency in both Wt and $Ku80^{-/-}MEFs$, but was associated with differences in the expression of important cell cycle regulatory genes. Our results support the notion that Ku80-mediated cytoprotection and $G_2$/M-progression are not only dependent on the cell's DNA repair but also may reflect Ku80's influence on additional cellular processes such as gene expression.

DNA 손상 유발을 위해 cisplatin, mitomycin 그리고 adriamycin을 농도별로 처리하여 세포독성 효과 및 세포주기 분포를 조사하였다. 이들 약제중 adriamycin의 감수성이 가장 높았으며 특히 $Ku80^{-/-}MEFs$가 현저한 세포독성 감수성 효과를 나타내었다. DNA 회복과 관련된 S phase의 분포도를 알아보기 위하여 adriamycin을 처리한 결과 DNA-$PKcs^{-/-}MEFs$$Ku80^{-/-}MEFs$ 모두에서 S phase는 대조군과 비슷하게 나타났다. 그리고 DNA$PKcs^{-/-}MEFs$에 adriamycin 처리시 6시간 경과 후 $G_2$/M phase가 증가되었으나 30시간 경과시 정상으로 회복되었다. 그러나 $Ku80^{-/-}MEFs$는 6시간 경과 이후 36시간 경과시 까지 $G_2$/M phase가 지속적으로 증가하다 결국 사멸되었다. 따라서 Ku80는 세포주기 조절 유전자의 발현을 위해 필수적인 단백질이며 Ku80의 결핍은 $G_2$M phase에서 다음 단계로의 세포주기 변화를 상실하여 사멸하게 된다. 그러므로 $Ku80^{-/-}MEFs$가 대조군과 다른 반응을 나타내는 것은 DNA 회복정도의 차이에서 오는 것이 아니라 세포주기 조절유전자 발현의 차이에서 오는 것으로 사료된다.

Keywords

References

  1. Beckman, K. B. and B. N. Ames. 1998. The free radical theory of aging matures. Physiol. Rev. 78, 547-581
  2. Boulton, S. J. and S. P. Jackson. 1998. Components of the Ku-dependent non-homologous end joining path-way are involved in telomeric length maintenance and telomeric silencing. EMBO. J. 17, 1819-1828 https://doi.org/10.1093/emboj/17.6.1819
  3. Chu, G. 1997. Double strand break repair. J. Biol. Chern. 272, 24097-24100 https://doi.org/10.1074/jbc.272.39.24097
  4. Difilippantonio, M. J. and J. T. Zhu. 2000. DNA repair protein Ku80 suppresses chromosomal aberrations and malignant transformation. Nature. 404, 510-514 https://doi.org/10.1038/35006670
  5. Gravel, S., M. Larrivee and P. Labrecque. 1998. Yeast Ku as a regulator of chromosomal DNA end structure. Science. 280, 741-744 https://doi.org/10.1126/science.280.5364.741
  6. Gu, Y., K. J. Seidl, G. A Rathbun, C. Zhu and J. P. Manis. 1997. Growth retardation and leaky SCID phenotype of Ku70-deficient mice. Immunity. 7, 653-665 https://doi.org/10.1016/S1074-7613(00)80386-6
  7. Henle, E. S. and S. linn. 1997. Formation, prevention and repair of DNA damage by iron/hydrogen peroxide. J. BioI. Chem. 272, 19095-19098 https://doi.org/10.1074/jbc.272.31.19095
  8. Hsu, H. L., D. Gilley and E. H. Blacknurn. 1999. Ku is associated with the telomere in mammals. Proc. Natl. Acad. Sci. USA 96, 12454-12458 https://doi.org/10.1073/pnas.96.22.12454
  9. Kim, S. H., D. Kim, J. S. Han and C. S. Jeong. 1999. Ku autoantigen affects the susceptibility to anticancer drugs. Cancer Res. 59, 4012-4017
  10. Kuhn, A, T. M. Gottlieb and S. P. Jackson. 1995. DNA-dependent protein kinase: a protein inhibitor of transcription by RNA polymerase I. Genes Dev. 9, 193-203 https://doi.org/10.1101/gad.9.2.193
  11. Larsen, A K. and A Skladanowski. 1996. The roles of DNA topoisomerase II during the cell cycle. Prog. Cell Cycle Res. 2, 229-239
  12. Lee, S. E., R. A. Mitchell, A Cheng and E. A. Hendrickson. 1997. Evidence for DNA-PK-dependent and -independent DNA double-strand break repair pathways in mammalian cells as a function of the cell cycle. Mol. Cell. BioI. 17, 1425-1433
  13. Lee, S. E., J. K. Moore and A Holmes. 1998. Sac-charomyces Ku70, mre II/ rad50 and RPA proteins regulate adptation to G2/M arrest after DNA damage. Cell. 94, 399-409 https://doi.org/10.1016/S0092-8674(00)81482-8
  14. Lu, R., H. M. Nash and G. L. Verdine. 1997. A mam-malian DNA repair enzyme that excise oxidatively damaged guanines maps to a locus frequently lost in lung cancer. Curr. Biol. 7, 397-407 https://doi.org/10.1016/S0960-9822(06)00187-4
  15. Mitra, S., T. Lzumi, I. Blodogh and C. V. Ramana. 1999. Repair of oxidative DNA damage and aging. Advance in DNA damage and repair. 295-311
  16. Munoz, P., M. Z. Zdzienicka, J. M. Blanchard and J. Piette. 1998. Hyper-sensitivity of Ku-deficient cells toward the DNA topoisomerase II inhibitor ICRF193 suggests a novel role for Ku antigen during the G2 and M phase of the cell cycle. Mol. Cell. Biol. 18, 5797-5808
  17. Nussenzweig, A., K. Sokol and P. Burgman. 1997, Hypersensitivity of Ku80-deficient cell lines and mice to DNA damage: the dffects of ionizing radiation on growth, survival, and development. Proc. Natl. Acad. Sci. USA 94, 13588-13593 https://doi.org/10.1073/pnas.94.25.13588
  18. Rosequist, T. A., D. O. Zharkov and A. P. Grollman. 1997. Cloning and characterization of a mammalian 8-oxoguanine DNA glycosylase. Proc. Natl. Acad. Sci. USA 94, 7429-7434 https://doi.org/10.1073/pnas.94.14.7429
  19. Singh, N. P., M. T. McCoy and R. P. Tice. 1988. A simple technique for quantitation of low levels of DNA damage in individual cells. Exp. Cell. Res. 175, 184-191 https://doi.org/10.1016/0014-4827(88)90265-0
  20. Slupska, M. M., C. Baikalov, W. M. Luther, Y. F. Chiang and J. H. Miller. 1996. Cloning and sequenc-ing of a huamn homolog (hMYH) of the Escherichia coli mutY gene whose function is required for the repair of oxidative DNA damage. J. Bacteriol. 178 3885-3892
  21. Smith, G. C. M. and S. P. Jackson. 1999. The DNA-dependent protein kinase. Genes Dev. 13, 916-934 https://doi.org/10.1101/gad.13.8.916
  22. Vaughan, A. T. M. and D. J. Gordon. 1992. Hydrogen peroxide lethality is associated with a decreased ability to maintain positive DNA supercoiling. Exp. Cell. Res. 202, 376-380 https://doi.org/10.1016/0014-4827(92)90088-P
  23. Vogel, H., D. S. Lim, G. Karsenty and M. Finegold. 1999. Deletion of Ku86 causes early onset of senes-cence in mice. Proc. Natl. Acad. Ssi. USA. 96, 10770-10775 https://doi.org/10.1073/pnas.96.19.10770
  24. Wang, X. W., Q. Zhan, J. D. Couresn and M. A. Khan. 1999. GADD45 induction of a G2/M cell cycle ceckpoint. Proc. Natl. Acad. Sci. USA 96, 3706-3711 https://doi.org/10.1073/pnas.96.7.3706