• 제목/요약/키워드: double integrals

검색결과 18건 처리시간 0.025초

EVALUATION OF A NEW CLASS OF DOUBLE DEFINITE INTEGRALS

  • Gaboury, Sebastien;Rathie, Arjun Kumar
    • 대한수학회논문집
    • /
    • 제32권4호
    • /
    • pp.979-990
    • /
    • 2017
  • Inspired by the results obtained by Brychkov ([2]), the authors evaluate a large number of new and interesting double definite integrals. The results are obtained with the use of classical hypergeometric summation theorems and a well-known double finite integral due to Edwards ([3]). The results are given in terms of Psi and Hurwitz zeta functions suitable for numerical computations.

DOUBLE INTEGRALS INVOLVING PRODUCT OF TWO GENERALIZED HYPERGEOMETRIC FUNCTIONS

  • Kim, Joohyung;Kim, Insuk
    • 호남수학학술지
    • /
    • 제43권1호
    • /
    • pp.26-34
    • /
    • 2021
  • In this paper two interesting double integrals involving product of two generalized hypergeometric functions have been evaluated in terms of gamma function. The results are derived with the help of known integrals involving hypergeometric functions recorded in the paper of Rathie et al. [6]. We also give several very interesting special cases.

A NEW CLASS OF DOUBLE INTEGRALS

  • Anil, Aravind K.;Prathima, J.;Kim, Insuk
    • 한국수학교육학회지시리즈B:순수및응용수학
    • /
    • 제28권2호
    • /
    • pp.111-117
    • /
    • 2021
  • In this paper we aim to establish a new class of six definite double integrals in terms of gamma functions. The results are obtained with the help of some definite integrals obtained recently by Kim and Edward equality. The results established in this paper are simple, interesting, easily established and may be useful potentially.

ON A NEW CLASS OF DOUBLE INTEGRALS INVOLVING GENERALIZED HYPERGEOMETRIC FUNCTION 3F2

  • Kim, Insuk
    • 호남수학학술지
    • /
    • 제40권4호
    • /
    • pp.809-816
    • /
    • 2018
  • The aim of this research paper is to evaluate fifty double integrals invoving generalized hypergeometric function (25 each) in the form of $${{\int}^1_0}{{\int}^1_0}\;x^{{\gamma}-1}y^{{\gamma}+c-1}(1-x)^{c-1}(1-y)^{c+{\ell}}(1-xy)^{{\delta}-2c-{\ell}-1}{\times}_3F_2\[{^{a,\;b,\;2c+{\ell}+1}_{\frac{1}{2}(a+b+i+1),\;2c+j}}\;;{\frac{(1-x)y}{1-xy}}\]dxdy$$ and $${{\int}^1_0}{{\int}^1_0}\;x^{{\gamma}-1}y^{{\gamma}+c+{\ell}}(1-x)^{c+{\ell}}(1-y)^{c-1}(1-xy)^{{\delta}-2c-{\ell}-1}{\times}_3F_2\[{^{a,\;b,\;2c+{\ell}+1}_{\frac{1}{2}(a+b+i+1),\;2c+j}}\;;{\frac{1-y}{1-xy}}\]dxdy$$ in the most general form for any ${\ell}{\in}{\mathbb{Z}}$ and i, j = 0, ${\pm}1$, ${\pm}2$. The results are derived with the help of generalization of Edwards's well known double integral due to Kim, et al. and generalized classical Watson's summation theorem obtained earlier by Lavoie, et al. More than one hundred ineteresting special cases have also been obtained.

AN OPERATOR VALUED FUNCTION SPACE INTEGRAL OF FUNCTIONALS INVOLVING DOUBLE INTEGRALS

  • Kim, Jin-Bong;Ryu, Kun-Sik
    • 대한수학회논문집
    • /
    • 제12권2호
    • /
    • pp.293-303
    • /
    • 1997
  • The existence theorem for the operator valued function space integral has been studied, when the wave function was in $L_1(R)$ class and the potential energy function was represented as a double integra [4]. Johnson and Lapidus established the existence theorem for the operator valued function space integral, when the wave function was in $L_2(R)$ class and the potential energy function was represented as an integral involving a Borel measure [9]. In this paper, we establish the existence theorem for the operator valued function we establish the existence theorem for the operator valued function space integral as an operator from $L_1(R)$ to $L_\infty(R)$ for certain potential energy functions which involve double integrals with some Borel measures.

  • PDF

GENERALIZED DOUBLE INTEGRAL INVOLVING KAMPÉ DE FÉRIET FUNCTION

  • Kim, Yong-Sup;Ali, Shoukat;Rathie, Navratna
    • 호남수학학술지
    • /
    • 제33권1호
    • /
    • pp.43-50
    • /
    • 2011
  • The aim of this paper is to obtain twenty five Eulerian type double integrals in the form of a general double integral involving Kamp$\'{e}$ de F$\'{e}$riet function. The results are derived with the help of the generalized classical Watson's theorem obtained earlier by Lavoie, Grondin and Rathie. A few interesting special cases of our main result are also given.

EVALUATION OF CERTAIN ALTERNATING SERIES

  • Choi, Junesang
    • 호남수학학술지
    • /
    • 제36권2호
    • /
    • pp.263-273
    • /
    • 2014
  • Ever since Euler solved the so-called Basler problem of ${\zeta}(2)=\sum_{n=1}^{\infty}1/n^2$, numerous evaluations of ${\zeta}(2n)$ ($n{\in}\mathbb{N}$) as well as ${\zeta}(2)$ have been presented. Very recently, Ritelli [61] used a double integral to evaluate ${\zeta}(2)$. Modifying mainly Ritelli's double integral, here, we aim at evaluating certain interesting alternating series.