EVALUATION OF CERTAIN ALTERNATING SERIES

Junesang Choi

Abstract

Ever since Euler solved the so-called Basler problem of $\zeta(2)=\sum_{n=1}^{\infty} 1 / n^{2}$, numerous evaluations of $\zeta(2 n)(n \in \mathbb{N})$ as well as $\zeta(2)$ have been presented. Very recently, Ritelli [61] used a double integral to evaluate $\zeta(2)$. Modifying mainly Ritelli's double integral, here, we aim at evaluating certain interesting alternating series.

The Riemann Zeta function $\zeta(s)$ is defined by (see, e.g., [70, p. 164])

$$
\begin{equation*}
\zeta(s):=\sum_{n=1}^{\infty} \frac{1}{n^{s}} \quad \text { for } \quad \Re(s)>1 \tag{1}
\end{equation*}
$$

The Riemann Zeta function $\zeta(s)$ in (1) plays a central rôle in the applications of complex analysis to number theory. The number-theoretic properties of $\zeta(s)$ are exhibited by the following result known as Euler's formula, which gives a relationship between the set of primes and the set of positive integers:

$$
\begin{equation*}
\zeta(s)=\prod_{p}\left(1-p^{-s}\right)^{-1} \quad \text { for } \quad \Re(s)>1 \tag{2}
\end{equation*}
$$

where the product is taken over all primes.
The solution of the so-called Basler problem (cf., e.g., [16], [28, p. xxii], Spiess [67, p. 66], Stark [75, pp. 197-198] and Zygmund [90, p. 364]):

$$
\begin{equation*}
\zeta(2)=\sum_{k=1}^{\infty} \frac{1}{k^{2}}=\frac{\pi^{2}}{6} \tag{3}
\end{equation*}
$$

Key words and phrases. Riemann Zeta function, Basler problem, Bernoulli numbers, double integrals, residue theorem.
was first found in 1735 by Leonhard Euler (1707-1783) [32], although Jakob Bernoulli (1654-1705) and Johann Bernoulli (1667-1748) did their utmost to sum the series in (3). The former of these Bernoulli brothers did not live to see the solution of the problem, and the solution became known to the latter soon after Euler found (see, for details, Knopp [48, p. 238]). Five years later in 1740, Euler (see [33]; see also [34, pp. 137153]) succeeded in evaluating all of $\zeta(2 n)(n \in \mathbb{N}:=\{1,2,3, \ldots\})$:

$$
\begin{equation*}
\zeta(2 n)=(-1)^{n+1} \frac{(2 \pi)^{2 n}}{2(2 n)!} B_{2 n} \quad \text { for } \quad n \in \mathbb{N}_{0}:=\mathbb{N} \cup\{0\} \tag{4}
\end{equation*}
$$

where $B_{n}\left(n \in \mathbb{N}_{0}\right)$ are the nth Bernoulli numbers defined by the following generating function (see, e.g., [70, p. 81]):

$$
\begin{equation*}
\frac{z}{e^{z}-1}=\sum_{n=0}^{\infty} B_{n} \frac{z^{n}}{n!} \quad \text { for } \quad|z|<2 \pi \tag{5}
\end{equation*}
$$

The following recursion formula

$$
\begin{equation*}
B_{n}=\sum_{k=0}^{n}\binom{n}{k} B_{k} \quad(n \in \mathbb{N} \backslash\{1\}) \quad \text { and } \quad B_{0}=1 \tag{6}
\end{equation*}
$$

can be used for computing Bernoulli numbers. Ever since Euler first evaluated $\zeta(2)$ and $\zeta(2 n)$, numerous interesting solutions of the problem of evaluating the $\zeta(2 n)(n \in \mathbb{N})$ have appeared in the mathematical literature. Even though there were certain earlier works which gave a rather long list of papers and books together with some useful comments on the methods of evaluation of $\zeta(2)$ and $\zeta(2 n)$ (see, e.g., [9], [25], [45] and [75]), the reader may be referred to the very recent work [19] which contains an extensive literature of as many as more than 70 papers.

Among many different ways to prove (3), several authors have taken advantage of the nice interplay between a double integral and a geometric series (see, e.g., $[5,11,39]$). Very recently, Ritelli [61] chose to use the following double integral

$$
\begin{equation*}
\int_{0}^{\infty} \int_{0}^{\infty} \frac{d x d y}{(1+y)\left(1+x^{2} y\right)} \tag{7}
\end{equation*}
$$

to evaluate (3). Indeed, Ritelli [61] evaluated the double integral (7) in two ways by changing the order of integration regarding the two variables x and y and incorporate the two resulting expressions to prove (3).

Modifying the double integral (7) by the following ones

$$
\begin{equation*}
\mathcal{I}_{p}=: \int_{0}^{\infty} \int_{0}^{\infty} \frac{d x d y}{(1+y)\left(1+x^{2} \sqrt[p]{y}\right)} \quad(p \in \mathbb{N} \backslash\{1\}) \tag{8}
\end{equation*}
$$

and evaluating the integrals (8) in two ways by changing the order of integration regarding the two variables x and y, we present (presumably) new formulas for certain interesting alternating series asserted by the following theorem.

Theorem. Each of the following formulas holds true.

$$
\begin{equation*}
\sum_{n=0}^{\infty}(-1)^{n}\left\{\frac{1}{(4 n+1)^{2}}-\frac{1}{(4 n+3)^{2}}\right\}=\frac{\pi^{2}}{8 \sqrt{2}} \tag{9}
\end{equation*}
$$

$$
\begin{equation*}
\sum_{n=0}^{\infty}(-1)^{n}\left\{\frac{1}{(8 n+1)^{2}}-\frac{1}{(8 n+7)^{2}}\right\}=\frac{1}{32} \sqrt{5+\frac{7}{\sqrt{2}}} \pi^{2} \tag{10}
\end{equation*}
$$

(11) $\sum_{n=0}^{\infty}(-1)^{n}\left\{\frac{1}{(12 n+1)^{2}}-\frac{1}{(12 n+11)^{2}}\right\}=\frac{1}{72} \sqrt{26+15 \sqrt{3}} \pi^{2}$.

$$
\begin{align*}
& \sum_{n=0}^{\infty}(-1)^{n}\left\{\frac{1}{(16 n+1)^{2}}-\frac{1}{(16 n+15)^{2}}\right\} \\
& =\frac{1}{128} \sqrt{42+29 \sqrt{2}+\sqrt{3445+\frac{4871}{\sqrt{2}}} \pi^{2}} \tag{12}
\end{align*}
$$

(13) $\sum_{n=0}^{\infty}(-1)^{n}\left\{\frac{1}{(20 n+1)^{2}}-\frac{1}{(20 n+19)^{2}}\right\}=\frac{\pi^{2}}{400} \cot \left(\frac{\pi}{20}\right) \csc \left(\frac{\pi}{20}\right)$.

Proof. We will prove only (9) by evaluating \mathcal{I}_{2} in (8). Beginning by integrating \mathcal{I}_{2} with respect to the variable x, we have

$$
\begin{aligned}
\mathcal{I}_{2} & =\int_{0}^{\infty}\left(\frac{1}{1+y} \int_{0}^{\infty} \frac{d x}{1+x^{2} \sqrt{y}}\right) d y \\
& =\int_{0}^{\infty}\left(\left.\frac{1}{\sqrt[4]{y}(1+y)} \arctan (\sqrt[4]{y} x)\right|_{x=0} ^{x=\infty}\right) d y \\
& =\frac{\pi}{2} \int_{0}^{\infty} \frac{d y}{\sqrt[4]{y}(1+y)} .
\end{aligned}
$$

Setting $t=\sqrt[4]{y}$ in the last integral, we have

$$
\mathcal{I}_{2}=2 \pi \int_{0}^{\infty} \frac{x^{2}}{1+x^{4}} d x=\pi \int_{-\infty}^{\infty} \frac{x^{2}}{1+x^{4}} d x
$$

The last improper integral can be easily evaluated by applying the residue theorem (see, e.g., [14, Chapter]):

$$
\begin{equation*}
\int_{-\infty}^{\infty} \frac{x^{2}}{1+x^{4}} d x=2 \int_{0}^{\infty} \frac{x^{2}}{1+x^{4}} d x=\frac{\pi}{\sqrt{2}} \tag{14}
\end{equation*}
$$

We therefore obtain

$$
\begin{equation*}
\mathcal{I}_{2}=\frac{\pi^{2}}{\sqrt{2}} . \tag{15}
\end{equation*}
$$

On the other hand, we start with integrating \mathcal{I}_{2} with respect to the variable y :

$$
\mathcal{I}_{2}=\int_{0}^{\infty} \mathcal{I}_{y} d x
$$

where, for convenience,

$$
\mathcal{I}_{y}:=\int_{0}^{\infty} \frac{d y}{(1+y)\left(1+x^{2} \sqrt{y}\right)} d y
$$

Setting $y=u^{2}$ in the integral \mathcal{I}_{y}, we find

$$
\begin{aligned}
\mathcal{I}_{y} & =\int_{0}^{\infty} \frac{2 u}{\left(1+u^{2}\right)\left(1+x^{2} u\right)} d u \\
& =\frac{1}{x^{4}+1} \int_{0}^{\infty}\left(-2 \frac{x^{2}}{1+x^{2} u}+\frac{2 u}{1+u^{2}}+2 x^{2} \frac{1}{1+u^{2}}\right) d u
\end{aligned}
$$

We thus obtain

$$
\begin{aligned}
\mathcal{I}_{y} & =\left.\frac{1}{x^{4}+1}\left[-2 \ln \left(1+x^{2} u\right)+\ln \left(1+u^{2}\right)+2 x^{2} \arctan u\right]\right|_{u=0} ^{u=\infty} \\
& =-\frac{4}{x^{4}+1} \ln x+\frac{\pi x^{2}}{x^{4}+1} .
\end{aligned}
$$

By applying (14) to the following integral

$$
\begin{equation*}
\mathcal{I}_{2}=\int_{0}^{\infty} \mathcal{I}_{y} d x=-4 \int_{0}^{\infty} \frac{\ln x}{x^{4}+1} d x+\frac{\pi^{2}}{2 \sqrt{2}} . \tag{16}
\end{equation*}
$$

Equating the two formulas in (15) and (16), we get

$$
\begin{equation*}
\int_{0}^{\infty} \frac{\ln x}{1+x^{4}} d x=-\frac{\pi^{2}}{8 \sqrt{2}} \tag{17}
\end{equation*}
$$

Now we find that

$$
\begin{aligned}
-\frac{\pi^{2}}{8 \sqrt{2}} & =\int_{0}^{1} \frac{\ln x}{1+x^{4}} d x+\int_{1}^{\infty} \frac{\ln x}{1+x^{4}} d x=\int_{0}^{1} \frac{\ln x}{1+x^{4}} d x-\int_{0}^{1} \frac{x^{2} \ln x}{1+x^{4}} d x \\
& =\sum_{n=0}^{\infty} \frac{(-1)^{n+1}}{(4 n+1)^{2}}-\sum_{n=0}^{\infty} \frac{(-1)^{n+1}}{(4 n+3)^{2}} .
\end{aligned}
$$

Finally it is easy to see that the last formula proves (9). A similar argument will establish the other formulas in the theorem.

Remark. In order to get the formulas in Theorem, including the formula (17), we finally need to obtain the following ones:

$$
\begin{equation*}
\int_{0}^{\infty} \frac{\ln x}{1+x^{8}} d x=-\frac{1}{32} \sqrt{5+\frac{7}{\sqrt{2}}} \pi^{2} . \tag{18}
\end{equation*}
$$

$$
\begin{gather*}
\int_{0}^{\infty} \frac{\ln x}{1+x^{12}} d x=-\frac{1}{72} \sqrt{26+15 \sqrt{3}} \pi^{2} . \tag{19}\\
\int_{0}^{\infty} \frac{\ln x}{1+x^{16}} d x=-\frac{1}{128} \sqrt{42+29 \sqrt{2}+\sqrt{3445+\frac{4871}{\sqrt{2}}}} \pi^{2} . \\
\int_{0}^{\infty} \frac{\ln x}{1+x^{20}} d x=-\frac{\pi^{2}}{400} \cot \left(\frac{\pi}{20}\right) \csc \left(\frac{\pi}{20}\right) .
\end{gather*}
$$

It is noted that the integral formulas (18) to (21) as well as (17) can be directly evaluated by applying the residue calculus to the functions

$$
\frac{\log z}{1+z^{2 n}} \quad\left(|z|>0 ;-\frac{\pi}{2}<\arg z<\frac{3 \pi}{2}\right)
$$

for $n=2,4,6,8,10$, on the upper complex plane indented upward at the origin 0 (see, e.g., [14, pp. 280-283]).

References

[1] M. Abramowitz, I. A. Stegun (Editors), Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, Applied Mathematics Series 55, ninth printing, National Bureau of Standards, Washington, D.C., 1972.
[2] E. De Amo, M. Díaz Carrillo, J. Fernández-Sánchez, Another proof of Euler's formula for $\zeta(2 k)$, Proc. Amer. Math. Soc. 139 (2011), 1441-1444.
[3] R. Apéry, Irrationalité de $\zeta(2)$ et $\zeta(3)$, in "Journées Arithmétiques de Luminy" (Colloq. Internat. CNRS, Centre Univ. Luminy, Luminy, 1978), pp. 11-13, Astérisque 61 (1979), Soc. Math. France, Paris.
[4] T. M. Apostol, Another elementary proof of Euler's formula for $\zeta(2 n)$, Amer. Math. Monthly 80 (1973), 425-431.
[5] _ A proof that Euler missed: Evauating $\zeta(2)$ the easy way, Math. Intelligencer 5 (1983), 59-60.
[6] R. Ayoub, Euler and the Zeta Function, Amer. Math. Monthly 81 (1974), 10671086.
[7] E. Balanzario, Método elemental para la evaluación de la función zeta de Riemann en los enteros pares, Miscelánea Mat. 33 (2001), 31-41.
[8] A. Bényi, Finding the sums of harmonic series of even order, College Math. J. 36 (2005), 44-48.
[9] B. C. Berndt, Elementary evaluation of $\zeta(2 n)$, Math. Mag. 48 (1975), 148-154.
[10] B. C. Berndt, Ramanujan's Notebooks, Part I, Springer-Verlag, New York, Berlin, Heidelberg, Tokyo, 1985.
[11] F. Beukers, E. Calabi, J. Kolk, Sums of generalized harmonic series and volumes, Nieuw Arch. Wiskd. 3 (1993), 217-224.
[12] J. M. Borwein, P. B. Borwein, Pi and the AGM, John Wiley \& Sons, Inc., 1987.
[13] C. B. Boyer, A History of Mathematics, Princeton University Press, Princeton, John Wiley \& Sons, Inc., 1968.
[14] J. W. Brown and R. V. Churchill, Complex Variables and Applications, eighth edition, McGraw-Hill International Edition, 2009.
[15] P. L. Butzer and M. Hauss, Integral and rapidly convergeing series representations of the Dirichlet L-functions $L_{1}(s)$ and $L_{-4}(s)$, Atti Sem. Mat. Fis. Univ. Modena XL (1992), 329-359.
[16] R. Calinger, Leonhard Euler: The first St. Petersburg years (1727-1741), Historia Mathematica, 23 (1996), 121-166.
[17] L. Carlitz, A recurrence formula for $\zeta(2 n)$, Proc. Amer. Math. Soc. 12 (1961), 991-992.
[18] R. Chapman, Evaluating $\zeta(2)$. www.math.titech.ac.jp/~inoue/ACII-05-holder/zeta2.pdf
[19] C.-P. Chen and J. Choi, Further new evaluation of $\zeta(2 n)$, submitted for publication, 2013.
[20] X. Chen, Recursive formulas for $\zeta(2 k)$ and $L(2 k-1)$, College Math. J. 26 (1995), 372-376.
[21] M. P. Chen, An elementary evaluation of $\zeta(2 k)$, Chinese J. Math. 3 (1975), 11-15.
[22] Y. J. Cho, J. Choi, M. Jung, Note on an evaluation of $\zeta(p)$, Indian J. Pure Appl. Math. 37(5) (2006), 259-263.
[23] B. R. Choe, An elementary proof of $\Sigma_{n=1}^{\infty} 1 / n^{2}=\pi^{2} / 6$, Amer. Math. Monthly 94 (1987), 662-663.
[24] J. Choi, A proof of Euler's formula $\sum_{k=1}^{\infty} 1 / k^{2}=\pi^{2} / 6$, East Asian Math. J. $\mathbf{2 0 (2)}$ (2004), 127-129.
[25] J. Choi, Rapidly converging series for $\zeta(2 n+1)$ from Fourier series, Abs. Appl. Anal. Vol. 2014, Article ID 457620, 9 pages. http://dx.doi.org/10.1155/2014/457620
[26] J. Choi, A. K. Rathie, An evaluation of $\zeta(2)$, Far East J. Math. Sci. 5 (1997), 393-398.
[27] J. Choi, A. K. Rathie, H. M. Srivastava, Some hypergeometric and other evaluations of $\zeta(2)$ and allied series, Appl. Math. Comput. 104 (1999), 101-108.
[28] W. Dunham, Euler, The Master of Us All, Mathematical Association of America, Washington, DC, 1999.
[29] J. Duoandikoetxea, A sequence of polynomials related to the evaluation of the Riemann Zeta function, Math. Mag. 80 (2007), 38-45.
[30] T. Estermann, Elementary evaluation of $\zeta(2 n)$, J. London Math. Soc. 22 (1947), 10-13.
[31] Euler at 300. An Appreciation. Edited by R. E. Bradley, L. A. D'Antonio, and C. E. Sandifier. Mathematical Association of America, Washington, DC, 2007.
[32] L. Euler, De summis serierum reciprocarum, Comment. acad. sci. Petropolit. 7 $(1734 / 35),(1740) 123-134=$ Opera Omnia, Ser. 1 Bd. 14, 73-86, Leipzig-Berlin, 1924.
[33] , De seriebus quibusdam considerationes, Comment. acad. sci. Petropolit. 12 (1740), (1750) 53-96 = Opera Omnia, Ser. 1 Bd. 14, 407-462.
[34] , Introduction to Analysis of the Infinite, Book I (Translated by John D. Blanton), Springer-Verlag, New York, Berlin, Heidelberg, London, Paris, and Tokyo, 1988.
[35] D. P. Giesy, Still another elementary proof that $\sum 1 / k^{2}=\pi^{2} / 6$, Math. Mag. 45 (1972), 148-149.
[36] J. V. Grabiner, Who gave you the epsilon? Cauchy and the origins of rigorous calculus, Amer. Math. Monthly 90 (1983), 185-194.
[37] I. S. Gradshteyn and I. M. Ryzhik, Tables of Integrals, Series, and Products (Corrected and Enlarged edition prepared by A. Jeffrey), Academic Press, New York, 1980; Sixth edition, 2000.
[38] E. R. Hansen, A Table of Series and Products, Prentice-Hall, Englewood Cliffs, New Jersey, 1975.
[39] J. D. Harper, Another simple proof of $1+\frac{1}{2^{2}}+\frac{1}{3^{2}}+\cdots=\frac{\pi^{2}}{6}$, Amer. Math. Monthly 110 (2003), 540-541.
[40] J. Havil, Gamma: Exploring Euler's Constant, Princeton University Press, Princeton, 2003.
[41] F. Holme, En enkel beregning av $\sum_{k=1}^{\infty} \frac{1}{k^{2}}$, Nordisk Mat. Tidskr. 18 (1970), 91-92.
[42] L. Holst, A proof of Euler's infinite product for the sine, Amer. Math. Monthly 119 (2012), 518-521.
[43] R. M. Hovstad, The series $\sum_{k=1}^{\infty} 1 / k^{2 p}$, the area of the unit circle and Leibniz' formula, Nordisk Mat. Tidskr. 20 (1972), 92-98.
[44] C. Ji and Y. Chen, Euler's formula for $\zeta(2 k)$, proved by induction on k, Math. Mag. 73 (2000), 154-155.
[45] D. Kalman, Six ways to sum a series, College Math. J. (1993), 402-421.
[46] H. L. Keng, Introduction to Number Theory, Springer-Verlag, Berlin, Heidelberg, New York, 1982.
[47] M. Kline, Euler and infinite series, Math. Mag. 56 (1983), 307-314.
[48] K. Knopp, Theory and Application of Infinite Series (second English edition, translated from the second German edition revised in accordance with the fourth German edition by R. C. H. Young), Hafner Publ. Company, New York, 1951.
[49] H. T. Kuo, A recurrence formula for $\zeta(2 n)$, Bull. Amer. Math. Soc. 55 (1949), 573-574.
[50] L. Lewin, Polylogarithms and Associated Functions, Elsevier (North-Holland), New York, London, and Amsterdam, 1981.
[51] M. Dalai, How would Riemann evaluate $\zeta(2 n)$?, Amer. Math. Monthly 120(2) (2013), 169-171.
[52] T. Marshall, A short proof of $\zeta(2)=\pi^{2} / 6$, Amer. Math. Monthly 117 (2010), 352-353.
[53] Y. Matsuoka, An elementary proof of the formula $\sum_{k=1}^{\infty} 1 / k^{2}=\pi^{2} / 6$, Amer. Math. Monthly 68 (1961), 485-487.
[54] I. P. Natanson, Constructive Function Theory, Vol. I, Uniform Approximation, New York, 1964.
[55] E. H. Neville, A trigonometrical inequality, Proc. Cambridge Philos. Soc. 47 (1951), 629-632.
[56] P. K. Ojha, I. N. Singh, A discussion on two methods for finding the value of "The Riemann Zeta Function" $\zeta(s)$ where $s=2$, Math. Education 33(1) (1999), 24-28.
[57] T. J. Osler, Finding $\zeta(2 p)$ from a product of sines, Amer. Math. Monthly 111 (2004), 52-54.
[58] I. Papadimitriou, A simple proof of the formula $\sum_{k=1}^{\infty} k^{-2}=\pi^{2} / 6$, Amer. Math. Monthly 80 (1973), 424-425.
[59] A. van der Poorten, A proof that Euler missed \cdots Apéry's proof of the irrationality of $\zeta(3)$, Math. Intelligencer 1 (1979), 195-203.
[60] E. Popovici, G. Costovici, C. Popovici, The calculation of sums of harmonic series of even power, Bul. Inst. Politehn. Laşi, Sect. 133 (1987), 9-11.
[61] D. Ritelli, Another proof of $\zeta(2)=\frac{\pi^{2}}{6}$ using double integrals, Amer. Math. Monthly 120(7) (2013), 642-645.
[62] T. Rivoal, La fonction zêta de Riemann prend une infinité de valeurs irrationnelles aux entiers impairs, C. R. Acad. Sci. Paris 331, Série I, (2000), 267270.
[63] N. Robbins, Revisiting an old favorite, $\zeta(2 m)$, Math. Mag. 72 (1999), 317-319.
[64] E. E. Scheufens, From Fourier series to rapidly convergent series for Zeta(3), Math. Mag. 84 (2011), 26-32.
[65] I. Skau and E. S. Selmer, Noen anvendelser Finn Holmes methode for beregning av $\sum_{k=1}^{\infty} \frac{1}{k^{2}}$, Nordisk Mat. Tidskr. 19 (1971), 120-124.
[66] I. Song, A recursive formula for even order harmonic series, J. Comput. Appl. Math. 21 (1988), 251-256.
[67] O. Spiess, Die Summe der reziproken Quadratzahlen, in Festschrift zum 60 Geburtstag von Prof. Dr. Andreas Speiser (L. V. Ahlfors et al., Editors), pp. 66-86, Füssli, Zürich, 1955.
[68] H. M. Srivastava, Some rapidly converging series for $\zeta(2 n+1)$, Proc. Amer. Math. Soc. 127(2) (1999), 385-396.
[69] H. M. Srivastava, Some families of rapidly convergent series representations for the zeta functions, Taiwanese J. Math. 4 (2000), 569-599.
[70] H. M. Srivastava and J. Choi, Zeta and q-Zeta Functions and Associated Series and Integrals, Elsevier Science Publishers, Amsterdam, London, and New York, 2012.
[71] H. M. Srivastava, M. L. Glasser and V. S. Adamchik, Some definite integrals associated with the Riemann Zeta function, Zeitschr. Anal. Anwendungen 19 (2000), 831-846.
[72] E. L. Stark, Another proof of the formula $\sum_{k=1}^{\infty} 1 / k^{2}=\pi^{2} / 6$, Amer. Math. Monthly 76 (1969), 552-553.
[73] $\quad, 1-1 / 4+1 / 9+-\ldots=\pi^{2} / 12$, Praxis Math. 12 (1970), 1-3.
[74] _ A new method of evaluating the sums of $\sum_{k=1}^{\infty}(-1)^{k+1} k^{-2 p}, p=$ 1, 2, 3, \ldots and related series, Elem. Math. 27 (1972), 32-34.
[75] , The series $\sum_{k=1}^{\infty} k^{-s}, s=2,3,4 \cdots$, once more, Math. Mag. 47 (1974), 197-202.
[76] G. Stoica, A recurrence formula in the study of the Riemann Zeta function, Stud. Cere. Mat. (3) 39 (1987), 261-264.
[77] E. C. Titchmarsh, A series inversion formula, Proc. London Math. Soc. (2) 26 (1926), 1-11.
[78] F. G. Tricomi, Sulla somma delle inverse delle terze e quinte potenze dei numeri naturali, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. 847 (1969), 16-18.
[79] G. P. Tolstov, Fourier Series (translated from the Russian by Richard A. Silverman), Dover Publications, Inc., New York, 1976.
[80] H. Tsumura, An elementary proof of Euler's formula for $\zeta(2 m)$, Amer. Math. Monthly 111 (2004), 430-431.
[81] R. S. Underwood, An expression for the summation $\sum_{m=1}^{n} m^{p}$, Amer. Math. Monthly 35 (1928), 424-428.
[82] G. T. Williams, A new method of evaluating $\zeta(2 n)$, Amer. Math. Monthly 60 (1953), 19-25.
[83] K. S. Williams, On $\sum_{n=1}^{\infty} 1 / n^{2 k}$, Math. Mag. 44 (1971), 273-276.
[84] A. M. Yaglom, I. M. Yaglom, An elementary derivation of the formulas of Wallis, Leibniz and Euler for the number π (Russian), Uspehi Mat. Nauk, 8, 5 (57) (1953), 181-187.
[85] _, Challenging mathematical problems with elementary solutions, Vol. II, translated by James McCawley, Jr., Holden Day, San Francisco, 1967; Dover Publications, Inc., New York, 1987.
[86] D. Zagier, Values of Zeta functions and their Applications, First European Congress of Mathematics, Vol. II (Paris, 1992) (A. Joseph, F. Mignot, F. Murat, B. Prum, and R. Rentschler, Editors) pp. 497-512, Progress in Mathematics 120, Birkhäuser, Basel, 1994.
[87] G. B. M. Zerr, Summation of series, Amer. Math. Monthly 5 (1898), 128-135.
[88] N. Y. Zhang, K. S. Williams, Application of the Hurwitz zeta function to the evaluation of certain integrals, Canad. Math. Bull. 36 (1993), 373-384.
[89] W. Zudilin, One of the numbers $\zeta(5), \zeta(7), \zeta(9), \zeta(11)$ is irrational, Russian Math. Surveys 56 (2001), 774-776.
[90] A. Zygmund, Series, in: Encyclopaedia Britannica, 20 (1963), 363-367.

Junesang Choi
Department of Mathematics, Dongguk University, Gyeongju 780-714, Republic of Korea.
E-mail: junesang@mail.dongguk.ac.kr

