References
- C. Adiga and T. Kim, On a generalization of Sandor's function, Proc. Jangjeon Math. Soc.5(2)(2002), 119-129.
- P. Appell et J. Kampe de Feriet, Fonctions Hypergeometriques et Hyper-spheriques Polynomes d'Hermite, Gauthier-Villars, Paris, 1926.
-
J. Choi, A. K. Rathie, and H. Harsh, Remarks on a summation formula for three variables hypergeometric function
$X_8$ and certain hypergeometric transformations, East Asian Math. J. 25(4)(2009), 481-486. - J. Edward, A treatise on the integral calculus, Vol. II, Chelsea Publishing Company, New York,1922.
- H. Exton, hypergeometric functions of three variables , J. Indian acad. Math. 4(1982), 113-119.
- T. Kim, M. S. M. Naika, S. C. Kumar, L. C. Jang, Y. H. Kim and B. Lee, On some new Schlafli-type cubic modular equations, Adv. Stud. Contemp. Math. 20(1)(2010), 63-80.
-
Y. S. Kim, J. Choi, and A. K. Rathie, Remark on two results by Padmanabham for Exton's triple hypergeometric series
$X_8$ , Honam Math. J. 27(4)(2005), 603-608. -
Y. S. Kim and A. K. Rathie, On an extension formula for the triple hypergeometric series
$X_8$ due to Exton, Bull. Korean Math. Soc. 44(4)(2007), 743-751. https://doi.org/10.4134/BKMS.2007.44.4.743 - Y. S. Kim and A. K. Rathie, Another method for Padmanabham's transformation formula for Exton's triple hypergeometric series X8 for On an extension formula for the triple hypergeometric series X8, Commun. Korean Math. Soc. 24(4)(2009), 517-521. https://doi.org/10.4134/CKMS.2009.24.4.517
-
J. L. Lavoie, F. Grondin and A. K. Rathie Generalizations of Watson's theorem on the sum of a
$_3F_2$ , Indian J. Math., 32(1)(1992), 23-32. - S. W. Lee and Y. S. Kim, An extension of the triple hypergeometric series by Exton, Honam Math. J. 32(1)(2010), 61-71. https://doi.org/10.5831/HMJ.2010.32.1.061
- H. M. Srivastava and P. W. Karlsson(1985), Multiple Gaussian Hypergeometric Series, Halsted Press (Ellis Horwood Limited, Chichester); Wiley, New York, Chichester, Brisbane, and Toronto.
- Z. Zhang and Y. Zhang, Summation formulas of q-series by modified Abel's lemma, Adv. Stud. Contemp. Math.17(2)(2008), 119-129.