• Title/Summary/Keyword: double capacitor

Search Result 265, Processing Time 0.025 seconds

Effect of Conducting Composite on Characteristics of Electric Double Layer Capacitor (전기이중층 캐패시터의 특성에 미치는 혼성 도전재의 영향)

  • Kim, Ick-Jun;Lee, Sun-Young;Do, Chil-Hoon;Moon, Seong-In;Choi, Sung-Ok;Son, Young-Mo;Kim, Kyung-Ho
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.07b
    • /
    • pp.1140-1143
    • /
    • 2002
  • This work describes the effect of conducting composite on the characteristics of electric double layer capacitor. The cell, which was fabricated with conducting composite consisted of 50 wt.% of SPB and 50 wt.% of VGCF, exhibits the higher specific capacitance, the lower resistance and the better rate capability than those of the cells fabricated with each single electronic conductor. These enhanced properties could be related with the dense structure of electrode.

  • PDF

Improving Regenerative Break Energy Efficiency and Voltage Regulation Capability of DC Electric Railway by Coordination of VSC and EDLC (전압형 컨버터와 EDLC의 협조 제어에 의한 직류전기철도 회생에너지 이용률 및 전압 제어 능력 향상)

  • Jeon, Go-Woon;Yoo, Hyeong-Jun;Park, Jae-Sae
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.1
    • /
    • pp.176-181
    • /
    • 2015
  • In the DC electric railway system, the effective use of regenerative break energy is an important issue. Since regenerative break energy causes voltage rise or drop in the system, it should be also solved effectively. To solve the problems, applying electric double layer capacitor (EDLC) or voltage source converter (VSC) to the DC electric railway system has been studying. In this paper, the coordination of EDLC and VSC is proposed to solve the problem effectively with its coordinated control algorithm. The proposed method is tested to show its feasibility using Matlab/Simulink.

Electrochemical Properties of Electric Double Layer Capacitor Using Carbon Electrodes (Carbon 전극을 이용한 전기 이중층 캐패시터의 전기화학적 특성)

  • Bang, J.G.;Song, J.G.;Choi, S.A.;Park, G.C.;Gu, H.B.
    • Proceedings of the KIEE Conference
    • /
    • 1997.07d
    • /
    • pp.1609-1611
    • /
    • 1997
  • We fabricated five type of electric double layer capacitor(EDLC) with extremely stable activated carbon as a positive and negative electrodes. The electrodes consisted of activated carbon and several different conductor layers on aluminium foil. Cyclic voltammogram of activated carbon electrodes at scan rate 5mV/sec was reversable redox reaction. The discharge capacity of activated carbon-KS 6 composite electrode was higher than that of activated carbon electrode without KS 6.

  • PDF

Design of Coordinated Frequency Control Strategy applied to EDLC and BESSs for Microgrid in the Islanded Mode (독립운전 모드의 마이크로그리드에서 EDLC와 BESS의 주파수 협조제어전략 설계)

  • Yoo, Hyeong-Jun;Kim, Hak-Man
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.6
    • /
    • pp.820-827
    • /
    • 2014
  • Since a microgrid has renewable energy sources, imbalance between power supply and power demand occurs in the islanded mode. In order to solve the imbalance, several energy storage systems (ESSs) such as bettary energy storage system (BESS), EDLC (electric double layer capacitor), flywheel, and SMES (superconducting magnetic energy storage) are generally used. Especially, their electrical characteristics are different. For efficient use of them, a coordinated control scheme is required. In this paper, a coordinated control scheme for using a Lead-acid BESS, a Lithium BESS, and a EDLC is designed to efficient frequency control for a microgrid in the islanded mode. The coordinated frequency control strategy is designed based on their electrical characteristics. The feasibility of the proposed coordinated frequency control strategy is verified through the simulation.

Development of EDLC using aqueous polymeric gel electrolytel (수용성 고분자 젤 전해질을 이용한 전기이중층 커패시터 의 개발)

  • 오길훈;김한주;최원경;박수길
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.11a
    • /
    • pp.581-584
    • /
    • 2001
  • For the first time, a totally solid state electric double layer capacitor has been fabricated using an alkaline polymer electrolyte and an activated carbon powder as electrode material. The polymer electrolyte serves both as separator as well as electrode binder. The capacitor has a three-layer structure; electrode-electrolyte-electrode. A cyclic voltammetry and constant current discharge have been used for the determination of the electro chemical performance of capacitors.

  • PDF

Rate Capability of Electric Double-Layer Capacitor (EDLC) Electrodes According to Pore Length in Spherical Porous Carbons

  • Ka, Bok-H.;Yoon, Song-Hun;Oh, Seung-M.
    • Journal of the Korean Electrochemical Society
    • /
    • v.10 no.4
    • /
    • pp.252-256
    • /
    • 2007
  • A series of spherical porous carbons were prepared via resorcinol-formaldehyde (RF) sol-gel polymerization in the presence of cationic surfactant (CTAB, cetyltrimethylammonium bromide), wherein the carbon sphere size was controlled by varying the CTAB introduction time after a pre-determined period of addition reaction (termed as "pre-curing"). The sphere size gradually decreases with an increase in the pre-curing time within the range of 30-150 nm. The carbons possess two types of pores; one inside carbon spheres (intra-particle pores) and the other at the interstitial sites made by carbon spheres (inter-particle pores). Of the two, the surface exposed on the former was dominant to determine the electric double-layer capacitor (EDLC) performance of porous carbons. As the intra-particle pores were generated inside RF gel spheres by gasification, the pore diameter was similar for all these carbons, thereby the pore length turned out to be a decisive factor controlling the EDLC performance. The charge-discharge voltage profiles and complex capacitance analysis consistently illustrate that the smaller-sized RF carbons deliver a better rate capability, which must be the direct result of facilitated ion penetration into shorter pores.

Electrochemical Behavior of Lithium Titanium oxide/activated Carbon Composite for Electrochemical Capacitor

  • Yang, Jeong-Jin;Kim, Hong-Il;Yuk, Young-Jae;Kim, Han-Joo;Park, Soo-Gil
    • Journal of Electrochemical Science and Technology
    • /
    • v.1 no.1
    • /
    • pp.63-68
    • /
    • 2010
  • The $Li_4Ti_5O_{12}$/AC composite was prepared by sol-gel process with ultrasonication. The prepared composite was characterized by SEM, XRD and TG analysis, and their electrochemical behaviors were investigated by cyclic voltammetry, electrochemical impedance spectroscopy and charge-discharge test in 1M $LiBF_4$/PC electrolyte. From the results, the $Li_4Ti_5O_{12}$ particles coated on AC surface had an average particle size of 100 nm and showed spinel-framework structure. When the potential range of the $Li_4Ti_5O_{12}$/AC composite was extended from 0.1 to 2.5 V, redox peaks and electric double layer property were revealed. The initial discharge capacity of $Li_4Ti_5O_{12}$/AC composite was 218 mAh $g^{-1}$ at 1 C. The enhancement of discharge capacity was attributed to electric double layer of added activated carbon.

Characterization of Electric Double-Layer Capacitor with 0.75M NaI and 0.5 M VOSO4 Electrolyte

  • Chun, Sang-Eun;Yoo, Seung Joon;Boettcher, Shannon W.
    • Journal of Electrochemical Science and Technology
    • /
    • v.9 no.1
    • /
    • pp.20-27
    • /
    • 2018
  • We describe a redox-enhanced electric double-layer capacitor (EDLC) that turns the electrolyte in a conventional EDLC into an integral, active component for charge storage-charge is stored both through faradaic reactions with soluble redox-active molecules in the electrolyte, and through the double-layer capacitance in a porous carbon electrode. The mixed-redox electrolyte, composed of vanadium and iodides, was employed to achieve high power density. The electrochemical reaction in a supercapacitor with vanadium and iodide was studied to estimate the charge capacity and energy density of the redox supercapacitor. A redox supercapacitor with a mixed electrolyte composed of 0.75 M NaI and 0.5 M $VOSO_4$ was fabricated and studied. When charged to a potential of 1 V, faradaic charging processes were observed, in addition to the capacitive processes that increased the energy storage capabilities of the supercapacitor. The redox supercapacitor achieved a specific capacity of 13.44 mAh/g and an energy density of 3.81 Wh/kg in a simple Swagelok cell. A control EDLC with 1 M $H_2SO_4$ yielded 7.43 mAh/g and 2.85 Wh/kg. However, the relatively fast self-discharge in the redox-EDLC may be due to the shuttling of the redox couple between the polarized carbon electrodes.