DOI QR코드

DOI QR Code

Electrochemical Behavior of Lithium Titanium oxide/activated Carbon Composite for Electrochemical Capacitor

  • Yang, Jeong-Jin (Department of Industrial Engineering Chemistry, Chungbuk National University) ;
  • Kim, Hong-Il (Department of Industrial Engineering Chemistry, Chungbuk National University) ;
  • Yuk, Young-Jae (PureEchem Co., Ltd.) ;
  • Kim, Han-Joo (PureEchem Co., Ltd.) ;
  • Park, Soo-Gil (Department of Industrial Engineering Chemistry, Chungbuk National University)
  • Received : 2010.08.23
  • Accepted : 2010.09.30
  • Published : 2010.09.30

Abstract

The $Li_4Ti_5O_{12}$/AC composite was prepared by sol-gel process with ultrasonication. The prepared composite was characterized by SEM, XRD and TG analysis, and their electrochemical behaviors were investigated by cyclic voltammetry, electrochemical impedance spectroscopy and charge-discharge test in 1M $LiBF_4$/PC electrolyte. From the results, the $Li_4Ti_5O_{12}$ particles coated on AC surface had an average particle size of 100 nm and showed spinel-framework structure. When the potential range of the $Li_4Ti_5O_{12}$/AC composite was extended from 0.1 to 2.5 V, redox peaks and electric double layer property were revealed. The initial discharge capacity of $Li_4Ti_5O_{12}$/AC composite was 218 mAh $g^{-1}$ at 1 C. The enhancement of discharge capacity was attributed to electric double layer of added activated carbon.

Keywords

References

  1. B.E. Conway, Electrochemical Supercapacitor-Scientific Fundamentals and Technological Application, Kluwer Academic, New York 29-31 (1999).
  2. R. Kotz and M. Carlen, Electrochim. Acta, 45, 2483 (2000). https://doi.org/10.1016/S0013-4686(00)00354-6
  3. E. Frackowiak and F. Béguin, Carbon, 39, 937 (2001). https://doi.org/10.1016/S0008-6223(00)00183-4
  4. A.B. Fuertes, G. Lota, T.A. Centeno, and E. Frackowiak, Electrochim. Acta, 50, 2799 (2005). https://doi.org/10.1016/j.electacta.2004.11.027
  5. G.G. Amatucci, F. Badway, A.D. Pasquier, and T. Zheng, J. Electrochem. Soc., 148, A930 (2001). https://doi.org/10.1149/1.1383553
  6. S.W. Hwang and S.H. Hyun, J. of Power Sources, 172, 451 (2007). https://doi.org/10.1016/j.jpowsour.2007.07.061
  7. G.H. Yuan, Z.H. Jiang, A. Aramata, and Y.Z. Gao, Carbon, 43, 2913 (2005). https://doi.org/10.1016/j.carbon.2005.06.027
  8. V. Khomenko, E.R. Piñero, and F. Beguin, J. of Power Sources, 153, 183 (2006). https://doi.org/10.1016/j.jpowsour.2005.03.210
  9. Y.G. Wang and Y.Y. Xia, Electrochem. Commun., 7, 1138 (2005). https://doi.org/10.1016/j.elecom.2005.08.017
  10. G.G. Amatucci, F. Badway, A.D. Pasquier, and T. Zheng, J. Electrochem. Soc., 148, A930 (2001). https://doi.org/10.1149/1.1383553
  11. X. Hu, Z. Deng, J. Suo, and Z. Pan, J. of Power Sources, 187, 635 (2009). https://doi.org/10.1016/j.jpowsour.2008.11.033
  12. A.D. Pasquier, I. Plitz, J. Gural, S. Menocal, and G. Amatucci, J. of Power Sources, 113, 62 (2003). https://doi.org/10.1016/S0378-7753(02)00491-3
  13. L. Cheng, H.J. Liu, J.J. Zhang, H.M. Xiong, and Y.Y. Xia, J. Electrochem. Soc., 153, A1472 (2006). https://doi.org/10.1149/1.2204872
  14. H. Ge, N. Li, D. Li, C. Dai, and D. Wang, Electrochem. Commun., 10, 719 (2008). https://doi.org/10.1016/j.elecom.2008.02.026
  15. J.L. Allen, T.R. Jow, and J. Wolfenstine, J. of Power Sources, 159, 1340 (2006). https://doi.org/10.1016/j.jpowsour.2005.12.039

Cited by

  1. Considerations about the influence of the structural and electrochemical properties of carbonaceous materials on the behavior of lithium-ion capacitors vol.266, 2014, https://doi.org/10.1016/j.jpowsour.2014.05.024
  2. Synthesis and Electrochemical Characteristics of Spherical Li4Ti5O12/CNT Composite Materials for Hybrid Capacitors vol.6, pp.2, 2015, https://doi.org/10.5229/JECST.2015.6.2.59