DOI QR코드

DOI QR Code

Characterization of Electric Double-Layer Capacitor with 0.75M NaI and 0.5 M VOSO4 Electrolyte

  • Chun, Sang-Eun (School of Materials Sciences and Engineering, Kyungpook National University) ;
  • Yoo, Seung Joon (Department of Chemistry and Biochemistry, University of California) ;
  • Boettcher, Shannon W. (Department of Chemistry and Biochemistry, University of Oregon)
  • Received : 2017.12.19
  • Accepted : 2018.01.17
  • Published : 2018.03.31

Abstract

We describe a redox-enhanced electric double-layer capacitor (EDLC) that turns the electrolyte in a conventional EDLC into an integral, active component for charge storage-charge is stored both through faradaic reactions with soluble redox-active molecules in the electrolyte, and through the double-layer capacitance in a porous carbon electrode. The mixed-redox electrolyte, composed of vanadium and iodides, was employed to achieve high power density. The electrochemical reaction in a supercapacitor with vanadium and iodide was studied to estimate the charge capacity and energy density of the redox supercapacitor. A redox supercapacitor with a mixed electrolyte composed of 0.75 M NaI and 0.5 M $VOSO_4$ was fabricated and studied. When charged to a potential of 1 V, faradaic charging processes were observed, in addition to the capacitive processes that increased the energy storage capabilities of the supercapacitor. The redox supercapacitor achieved a specific capacity of 13.44 mAh/g and an energy density of 3.81 Wh/kg in a simple Swagelok cell. A control EDLC with 1 M $H_2SO_4$ yielded 7.43 mAh/g and 2.85 Wh/kg. However, the relatively fast self-discharge in the redox-EDLC may be due to the shuttling of the redox couple between the polarized carbon electrodes.

Keywords

References

  1. Lota, G., Fic, K., Frackowiak, E., Electrochem. Commun, 2011, 13(1), 38-41. https://doi.org/10.1016/j.elecom.2010.11.007
  2. Roldan, S., Blanco, C., Granda, M., Menendez, R., Santamaria, R. Angew, Chem. Int. Ed, 2011, 50(7), 1699-1701. https://doi.org/10.1002/anie.201006811
  3. Roldan, S., Gonzalez, Z., Blanco, C., Granda, M., Menendez, R., Santamaria, R, Electrochim. Acta, 2011, 56(9), 3401-3405. https://doi.org/10.1016/j.electacta.2010.10.017
  4. Roldan, S., Granda, M., Menendez, R., Santamaria, R., Blanco, C, J. Phys. Chem. C, 2011, 115(35), 17606-17611. https://doi.org/10.1021/jp205100v
  5. Senthilkumar, S.T., Selvan, R.K., Melo, J.S, J. Mater. Chem. A, 2013, 1(40), 12386-12394. https://doi.org/10.1039/c3ta11959a
  6. Conway, B.E. Electrochemical Supercapacitors: Scientific Fundamentals and Technological Applications. New York, KA / PP, (1999).
  7. Miller, J.R., Simon, P, Science, 2008, 321(5889), 651-652. https://doi.org/10.1126/science.1158736
  8. Wang, B., Maciá-Agulló, J.A., Prendiville, D.G., Zheng, X., Liu, D., Zhang, Y., et al., J. Electrochem. Soc, 2014, 161(6), A1090-A1093. https://doi.org/10.1149/2.058406jes
  9. Augustyn, V., Come, J., Lowe, M.A., Kim, J.W., Taberna, P.-L., Tolbert, S.H., et al, Nat. Mater, 2013, 12(6), 518-522. https://doi.org/10.1038/nmat3601
  10. Lukatskaya, M.R., Mashtalir, O., Ren, C.E., Dall'Agnese, Y., Rozier, P., Taberna, P.L., et al, Science. 2013, 341(6153), 1502-1505. https://doi.org/10.1126/science.1241488
  11. Chun, S.-E., Evanko, B., Wang, X., Vonlanthen, D., Ji, X., Stucky, G.D., et al, Nat. Commun, 2015, 67818.
  12. Lu, M., Beguin, F., Frackowiak, E. Supercapacitors: Materials, Systems and Applications, Wiley, (2013).
  13. Long, J.W., Beanger, D., Brousse, T., Sugimoto, W., Sassin, M.B., Crosnier, O, MRS Bulletin, 2011, 36(07), 513-522. https://doi.org/10.1557/mrs.2011.137
  14. Whitacre, J.F., Wiley, T., Shanbhag, S., Wenzhuo, Y., Mohamed, A., Chun, S.E., et al., J. Power Sources, 2012, 213, 255-264. https://doi.org/10.1016/j.jpowsour.2012.04.018
  15. Schweitzer, G.K., Pesterfield, L.L. The Aqueous Chemistry of the Elements, Oxford University Press, (2010).