DOI QR코드

DOI QR Code

Rate Capability of Electric Double-Layer Capacitor (EDLC) Electrodes According to Pore Length in Spherical Porous Carbons

  • Ka, Bok-H. (Department of Chemical and Biological Engineering, and Research Center for Energy Conversion & Storage, Seoul National University) ;
  • Yoon, Song-Hun (Department of Chemical and Biological Engineering, and Research Center for Energy Conversion & Storage, Seoul National University) ;
  • Oh, Seung-M. (Department of Chemical and Biological Engineering, and Research Center for Energy Conversion & Storage, Seoul National University)
  • Published : 2007.11.28

Abstract

A series of spherical porous carbons were prepared via resorcinol-formaldehyde (RF) sol-gel polymerization in the presence of cationic surfactant (CTAB, cetyltrimethylammonium bromide), wherein the carbon sphere size was controlled by varying the CTAB introduction time after a pre-determined period of addition reaction (termed as "pre-curing"). The sphere size gradually decreases with an increase in the pre-curing time within the range of 30-150 nm. The carbons possess two types of pores; one inside carbon spheres (intra-particle pores) and the other at the interstitial sites made by carbon spheres (inter-particle pores). Of the two, the surface exposed on the former was dominant to determine the electric double-layer capacitor (EDLC) performance of porous carbons. As the intra-particle pores were generated inside RF gel spheres by gasification, the pore diameter was similar for all these carbons, thereby the pore length turned out to be a decisive factor controlling the EDLC performance. The charge-discharge voltage profiles and complex capacitance analysis consistently illustrate that the smaller-sized RF carbons deliver a better rate capability, which must be the direct result of facilitated ion penetration into shorter pores.

Keywords

References

  1. A. Nishino, 'Capacitors: operating principles, current market and technical trends' J. Power Sources, 60, 137 (1996) https://doi.org/10.1016/S0378-7753(96)80003-6
  2. S.-R. Hwang, H. Teng, 'Capacitance enhancement of carbon fabric electrodes in electrochemical capacitors through electrodeposition with copper' J. Electrochem. Soc., 149, A591 (2002) https://doi.org/10.1149/1.1467234
  3. M. Winter, J. O. Besenhard, M. E. Spahr, P. Novak, 'Insertion electrode materials for rechargeable lithium batteries' Adv. Mater., 10, 725(1998) https://doi.org/10.1002/(SICI)1521-4095(199807)10:10<725::AID-ADMA725>3.0.CO;2-Z
  4. B. E. Conway, 'Electrochemical Supercapacitors', Kluwer Academic/ Plenum Publisher, (1999)
  5. R. Kotz, M. Carlen, 'Principles and applications of electrochemical capacitors', Electrochim. Acta, 45, 2483 (2000) https://doi.org/10.1016/S0013-4686(00)00354-6
  6. S. Yoon, J. Lee, T. Hyeon, S. M. Oh, 'Electric double-layer capacitor performance of a new mesoporous carbon', J. Electrochem. Soc., 147, 2507 (2000) https://doi.org/10.1149/1.1393561
  7. S. Yoon, J. H. Jang, B. H. Ka, S. M. Oh, 'Complex capacitance analysis on rate capability of electric-double layer capacitor (EDLC) electrodes of different thickness', Electrochim. Acta, 50, 2255 (2005) https://doi.org/10.1016/j.electacta.2004.10.009
  8. K. T. Lee, S. M. Oh, 'Novel synthesis of porous carbons with tunable pore size by surfactant-templated sol-gel process and carbonization', Chem. Commun., 21, 2722 (2002)
  9. N. Nishiyama, T. Zheng, Y. Yamane, Y. Egashira, K. Ueyama, 'Microporous carbons prepared from cationic surfactant-resorcinol/ formaldehyde composites', Carbon, 43, 269 (2005) https://doi.org/10.1016/j.carbon.2004.09.009
  10. I. Matos, S. Fernandes, L. Guerreiro, S. Barata, A. M. Ramos, J. Vital, I. M. Fonseca, 'The effect of surfactants on the porosity of carbon xerogels', Micro & Mesoporous Materials, 92, 38 (2006) https://doi.org/10.1016/j.micromeso.2005.12.011
  11. J. H. Jang, S. M. Oh, 'Complex capacitance analysis of porous carbon electrodes for electric double-layer capacitors', J. Electrochem. Soc., 151, A571 (2004) https://doi.org/10.1149/1.1647572
  12. J. H. Jang, S. Yoon, B. H. Ka,Y. H. Jung, S. M. Oh, 'Complex capacitance analysis on leakage current appearing for electric double-layer capacitor electrode', J. Electrochem. Soc., 152, A1418 (2005) https://doi.org/10.1149/1.1931469
  13. R. W. Pekala, 'Organic aerogels from polycondensation of resorcinol with formaldehyde', J. Mater. Sci., 24, 3221 (1989) https://doi.org/10.1007/BF01139044
  14. X. Lu, M. C. Arduini-Schuster, J. Kuhn, O. Nilsson, J. Fricke, R. W. Pekala, 'Thermal conductivity of monolithic organic aerogels', Science, 255, 971 (1992) https://doi.org/10.1126/science.255.5047.971
  15. C. Lin, J. A. Ritter, 'Effect of synthesis pH on the structure of carbon xerogels', Carbon,35, 1271 (1997) https://doi.org/10.1016/S0008-6223(97)00069-9
  16. H. Tamon, H. Ishizaka, 'SAXS Study on Gelation Process in Preparation of Resorcinol-Formaldehyde Aerogel', J. Colloid Interface Sci., 206, 577 (1998) https://doi.org/10.1006/jcis.1998.5770
  17. S. A. Al-Muhtaseb, J. A. Ritter, 'Preparation and properties of resorcinol- formaldehyde organic and carbon gels', Adv. Mater., 15, 101(2003) https://doi.org/10.1002/adma.200390020
  18. N. Job, R. Pirard, J. Marien, J. P. Pirard, 'Porous carbon xerogels with texture tailored by pH control during sol-gel process', Carbon, 42, 619 (2004) https://doi.org/10.1016/j.carbon.2003.12.072
  19. Y. Tao, H. Kanoh, K. Kaneko, 'Synthesis of Mesoporous zeolite A by resorcinol-formaldehyde templating', Langmuir, 21, 504 (2005) https://doi.org/10.1021/la047686j
  20. Y. Zhu, H. Hu, W. Li, X. Zhang, 'Resorcinol-formaldehyde based porous carbon as an electrode material for supercapacitors', Carbon, 45, 160 (2007) https://doi.org/10.1016/j.carbon.2006.07.010
  21. G. Horvath, K. Kawazoe, 'Method for the calculation effective pore size distribution in molecularsieve carbon', J. Chem. Eng. Jpn., 16, 470(1983) https://doi.org/10.1252/jcej.16.470
  22. G. Horvath, 'Energetic interactions in phase and molecular level pore characterisation in nano-range', Colloids Surf. A, 141, 295 (1998) https://doi.org/10.1016/S0927-7757(97)00191-X
  23. J. H. de Boer, B. C. Lippens, B. G Linsen, J. C. P. Broekhoff, A. van den Heuvel, Th. J. Osinga, 'The t-curve of multimolecular $N_2-adsorption$', J. Colloid Interface Sci., 21, 405 (1966)
  24. K. S. W. Sing, D. H. Evertt, R. A. W. Haul, L. Moscou, R. A. Pierotti, J. Rouquerol, T. Siemieniewska, 'Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity', Pure Appl. Chem., 57, 603 (1985) https://doi.org/10.1351/pac198557040603
  25. E. F. Sousa-Aguilar, A. Liebsch, B. C. Chaves, A. F. Costa, 'Influence of the external surface area of small crystallite zeolites on the micropore volume determination', Micropor. Mesopor. Mater., 25, 185 (1998) https://doi.org/10.1016/S1387-1811(98)00206-6
  26. M. Itagaki, S. Suzuki, I. Shitanda, K. Watanabe, H. Nakazawa, 'Impedance analysis on electric double layer capacitor with transmission line model', J. Power Sources, 164, 415 (2007) https://doi.org/10.1016/j.jpowsour.2006.09.077
  27. H. Y. Liu, K. P. Wang, H. Teng, 'A simplified preparation of mesoporous carbon and the examination of the carbon accessibility for electric double layer formation', Carbon, 43, 559 (2005) https://doi.org/10.1016/j.carbon.2004.10.020
  28. X. P. Dong, W. H. Shen, J. L. Gu, L. M. Xiong, Y. F. Zhu, H. Li, J. L. Shi, '$MnO_2-embedded-in-mesoporous-carbon-wall$ structure for use a electric double-layer capacitor', J. Phys. Chem. B, 110, 6015 (2006) https://doi.org/10.1021/jp056754n

Cited by

  1. Electrochemical Activation of Expanded Graphite Electrode for Electrochemical Capacitor vol.155, pp.9, 2008, https://doi.org/10.1149/1.2953525